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422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution

• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning

Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering
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Lecture Overview

• Statistical Relational (Star-AI) Models (for us 

aka Hybrid)

• Recap Markov Networks and log-linear models

• Markov Logic



Statistical Relational Models

Goals:

⚫ Combine (subsets of) logic and probability

into a single language (R&R system)

⚫ Develop efficient inference algorithms

⚫ Develop efficient learning algorithms

⚫ Apply to real-world problems

L. Getoor & B. Taskar (eds.), Introduction to Statistical

Relational Learning, MIT Press, 2007.
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Plethora of Approaches

⚫ Knowledge-based model construction
[Wellman et al., 1992]

⚫ Stochastic logic programs [Muggleton, 1996]

⚫ Probabilistic relational models
[Friedman et al., 1999]

⚫ Relational Markov networks [Taskar et al., 2002]

⚫ Bayesian logic [Milch et al., 2005]

⚫ Markov logic [Richardson & Domingos, 2006]

⚫ And many others….!
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Prob. Rel. Models vs. Markov Logic
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Lecture Overview

• Statistical Relational Models (for us aka Hybrid)

• Recap Markov Networks and log-linear models

• Markov Logic

• Markov Logic Network (MLN)



Parameterization of Markov Networks
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Factors define the local interactions (like CPTs in Bnets)

What about the global model? What do you do with Bnets? 

X

X



How do we combine local models?

As in BNets by multiplying them!
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Markov Networks
⚫ Undirected graphical models

Cancer

CoughAsthma

Smoking

⚫ Factors/Potential-functions defined over cliques

Smoking Cancer Ф(S,C)
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Markov Networks :log-linear model

⚫ Log-linear model:
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Lecture Overview

• Statistical Relational Models (for us aka Hybrid)

• Recap Markov Networks

• Markov Logic



Markov Logic: Intuition(1)

⚫ A logical KB is a set of hard constraints

on the set of possible worlds

)()( xCancerxSmokesx 
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Markov Logic: Intuition (2)
⚫ The more formulas in the KB a possible world satisfies 

the more it should be likely

⚫ Give each formula a weight

⚫ Adopting a log-linear model, by design, if a possible 

world satisfies a formula its probability should go up 

proportionally to exp(the formula weight). 

( ) satisfiesit  formulas of weightsexpP(world)

( ) satisfiesit  formulas of weightsP(world)) log(
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That is, if a possible world satisfies a formula its log 

probability should go up proportionally to the formula weight. 



Markov Logic: Definition
⚫ A Markov Logic Network (MLN) is 

⚫ a set of pairs (F, w) where

⚫ F is a formula in first-order logic

⚫ w is a real number

⚫ Together with a set C of constants,

⚫ It defines a Markov network with

⚫ One binary node for each grounding of each 
predicate in the MLN

⚫ One feature/factor for each grounding of each 
formula F in the MLN, with the corresponding weight w
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Grounding: 

substituting vars

with constants



Example: Friends & Smokers

habits.  smoking  similar  have  Friends

cancer.  causes  Smoking
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Example: Friends & Smokers

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx




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Example: Friends & Smokers

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

CPSC 422, Lecture 29 20



Example: Friends & Smokers

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Two constants: Anna (A) and Bob (B)
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MLN nodes

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Two constants: Anna (A) and Bob (B)

⚫ One binary node for each grounding of each 
predicate in the MLN

⚫ Any nodes missing?
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Grounding: 

substituting vars

with constants



MLN nodes (complete)

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

⚫ One binary node for each grounding of each 
predicate in the MLN
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MLN features

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Edge between two nodes iff the corresponding ground predicates 
appear together in at least one grounding of one formula

Which edge should not be there? 
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Grounding: 

substituting vars

with constants



MLN features

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)
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One feature/factor for each grounding of each formula F in 

the MLN



MLN: parameters
⚫ For each formula i we have a factor



 

=
otherwise0

x)(Cancerx)(Smokesif1
)Cancer(x)Smokes(x),(f

)()( xCancerxSmokesx 5.1
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MLN: prob. of possible world

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

=
c

cc pw
Z

pwP )(
1

)(
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MLN: prob. of possible world

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

=
c

cc pw
Z

pwP )(
1

)(
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MLN: prob. of possible world

( ))()(),(,

)()(

ySmokesxSmokesyxFriendsyx

xCancerxSmokesx





1.1

5.1

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

=
c

cc pw
Z

pwP )(
1

)(
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MLN: prob. Of possible world

⚫ Probability of a world pw:

Weight of formula i No. of true groundings of formula i in pw









= 

i

ii pwnw
Z

pwP )(exp
1

)(
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

( ) satisfiesit  formulas grounded of weightsexpP(world)
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Learning Goals for today’s class

You can:

• Describe the intuitions behind the design of a 

Markov Logic

• Define and Build a Markov Logic Network

• Justify and apply the formula for computing the 

probability of a possible world
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Next class on Wed

Markov Logic

-relation to FOL

- Inference (MAP and Cond. Prob)
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Assignment-4 will be posted this evening, due on 
Nov 29


