Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 29

Nov, 18, 2019

Slide source: from Pedro Domingos UW

422 big picture

StarAl (statistical relational Al)
Hybrid: Det +Sto
Prob CFG
Prob Relational Models
Markov Logics

Deterministic Stochastic

Logics
First Order Logics
Ontologies

- Full Resolution
- SAT

Query

Planning

Belief Nets

Approx. : Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models
Markov Networks
Conditional Random Fields

Markov Decision Processes and

Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of Al

Representation

Reasoning Technique

Lecture Overview

- Statistical Relational (Star-Al) Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic

Statistical Relational Models

Goals:

- Combine (subsets of) logic and probability into a single language (R&R system)
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems

L. Getoor & B. Taskar (eds.), *Introduction to Statistical Relational Learning*, MIT Press, 2007.

CPSC 422, Lecture 29

Plethora of Approaches

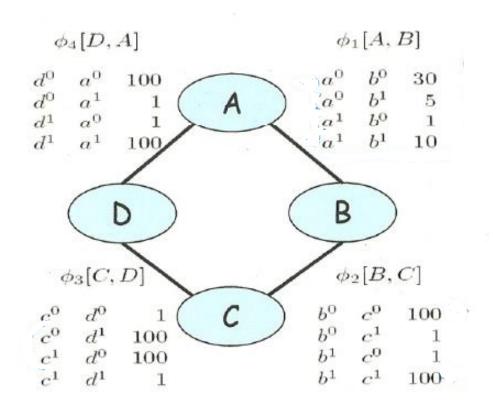
- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]
- And many others....!

Prob. Rel. Models vs. Markov Logic

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic
 - Markov Logic Network (MLN)

Parameterization of Markov Networks



X set of random
Vovs: Afactor is
$$\Phi(Val(X)) \rightarrow |P|$$

Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

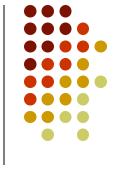
As in BNets by multiplying them!

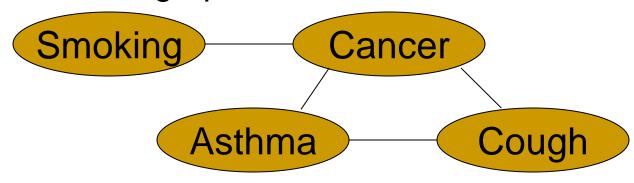
$$\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$$
$$P(A, B, C, D) = \frac{1}{Z}\tilde{P}(A, B, C, D)$$

Assignment			nt	Unnormalized	Normalized		
a^0	60	c^0	d^0	300000	.04		/ / DI
a^0	b^0	c^0	d^1	300000	.04	$\phi_4[D,A]$	$\phi_1[A,B]$
a^0	b^0	c^1	d^0	300000	.04	$d^0 = a^0 = 100$	$a^0 b^0 30$
a^0	b^0	c^1	d^1	30	4.1×10-6	d^0 a^1 1 (A	$a^0 b^1 = 5$
a^0	b^1	c^0	d^0	500	' •	d^1 a^0 1	$a^1 b^0 1$
a^0	b^1	c^0	d^1	500		$d^1 = a^1 = 100$	$a^1 b^1 10$
a^0	b^1	c^1	d^0	5000000	. 69		
a^0	b^1	c^1	d^1	500	, ·	(D)	(B)
a^1	b^0	c ⁰	d^0	100	' .		
a^1	b^0	c ⁰	d^1	1000000	•	10 01	$\phi_2[B,C]$
a^1	b^0	c^1	d^0	100	•	$\phi_3[C,D]$	~
a^1	b^0	c1	d^1	100		$c^{0} d^{0} = 1$ (C	$b^0 c^0 100$
a^1	b^1	c^0	d^0	10	•	c^0 d^1 100	$b^0 c^1 1$
a^1	b^1	c^0	d^1	100000		c^1 d^0 100 c^1 d^1 1	$b^{1} c^{0}$ 1 $b^{1} c^{1}$ 100
a^1	b^1	c^1	d^0	100000	•		
125	b1	c^1	d^1	100000			
a^1	b^1	c^1	d^1	100000			

Markov Networks

Undirected graphical models





Factors/Potential-functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum_{x} \prod_{c} \Phi_{c}(x_{c})$$

Smoking	Cancer	Ф(S,C)
F	F	4.5
F	Т	4.5
Т	F	2.7
Т	Т	4.5

Markov Networks : log-linear model

Smoking

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

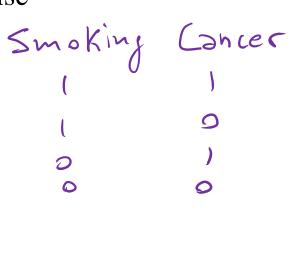
Log-linear model:

each
$$\Phi(x_c) = e^{w_c + c(x_c)}$$

$$w_1 = 0.51$$

$$f_1(\text{Smoking, Cancer}) = \begin{cases} 1 & \text{if } \neg \text{Smoking} \lor \text{Cancer} \\ 0 & \text{otherwise} \end{cases}$$

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x_{i})\right)$$
Weight of Feature *i* Feature *i*



Asthma

Cancer

Cough

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks
- Markov Logic

Markov Logic: Intuition(1)

 A logical KB is a set of hard constraints on the set of possible worlds _ CONSTANT

$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

Markov Logic: Intuition (2)

 The more formulas in the KB a possible world satisfies the more it should be likely

- Give each formula a weight
- Adopting a log-linear model, by design, if a possible world satisfies a formula its probability should go up proportionally to exp(the formula weight).

P(world)
$$\propto \exp(\sum \text{weights of formulas it satisfies})$$

That is, if a possible world satisfies a formula its **log probability** should go up proportionally to the formula weight.

$$log(P(world)) \propto \left(\sum weights of formulas it satisfies\right)$$

CPSC 422, Lecture 29

Markov Logic: Definition

- A Markov Logic Network (MLN) is
 - a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
 - Together with a set C of constants,
- It defines a Markov network with
 - One binary node for each grounding of each predicate in the MLN
 - One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

Grounding: substituting vars with constants

Smoking causes cancer.

Friends have similar smoking habits.


```
\forall x \ Smokes(x) \Rightarrow Cancer(x)
\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```


1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$$


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```

Two constants: **Anna** (A) and **Bob** (B)

MLN nodes

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

One binary node for each grounding of each predicate in the MLN

Grounding: substituting vars with constants



Any nodes missing?

MLN nodes (complete)

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$$

Two constants: **Anna** (A) and **Bob** (B)

One binary node for each grounding of each predicate in the MLN

Friends(A,B)

Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

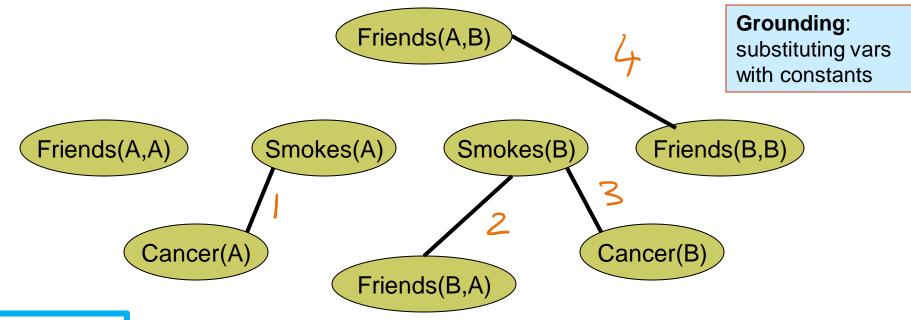
Cancer(B)

MLN features

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula



i≿licker.

Which edge should not be there?

A.1

13,2

C.3

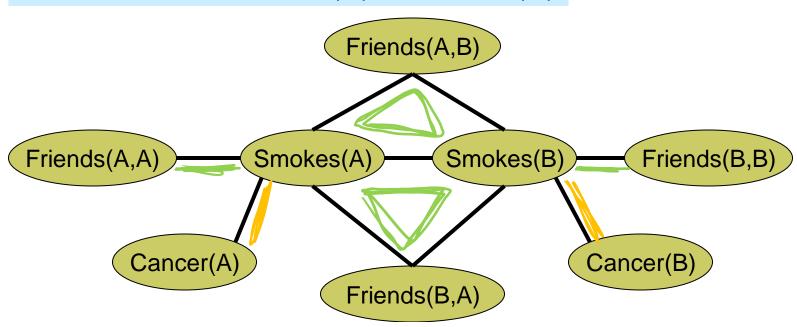
D.4

24

MLN features

- 6
- 1.5
- $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 4
- 1.1
- $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)



One *feature/factor* for each **grounding** of each **formula** F in the MLN

MLN: parameters

For each formula i we have a factor

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

$$f(\text{Smokes}(x), \text{ Cancer}(x)) = \begin{cases} 1 & \text{if } \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \\ 0 & \text{otherwise} \end{cases}$$

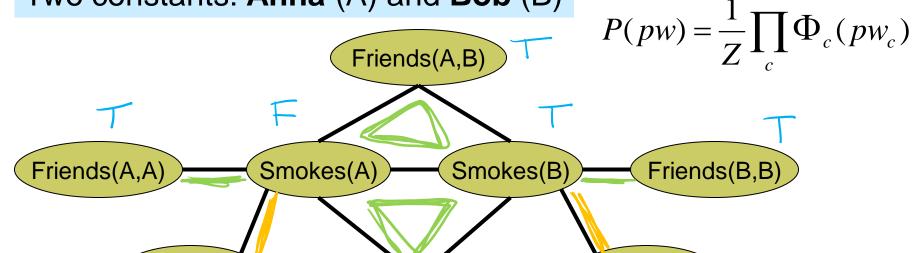
MLN: prob. of possible world

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

- $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

Cancer(A)



Friends(B,A)

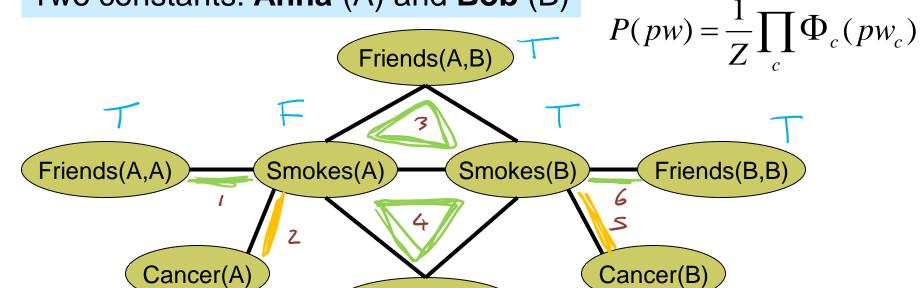
Cancer(B)

MLN: prob. of possible world

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

- $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)



CPSC 422, Lecture 29

Friends(B,A)

MLN: prob. of possible world

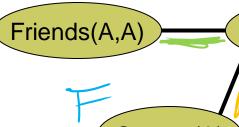
- **6**
- 1.5

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

- **(1)**
- 1.1
- $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

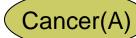




Smokes(A)

Smokes(B)

Friends(B,B)



Friends(B,A)

Cancer(B)

MLN: prob. Of possible world

Probability of a world pw:

$$P(pw) = \frac{1}{Z} \exp \left(\sum_{i} w_{i} | n_{i}(pw) \right)$$
Weight of formula *i*
No. of true groundings of formula *i* in *pw*

Friends(A,B)

Friends(A,B)

Cancer(A)

Smokes(B)

Friends(B,B)

Cancer(B)

Friends(B,A)

$$M_2(pw) = 2$$
 $M_1(pw) = 1$

 $P(\text{world}) \propto \exp(\sum_{i} \text{weights of grounded formulas it satisfies})$

Learning Goals for today's class

You can:

- Describe the intuitions behind the design of a Markov Logic
- Define and Build a Markov Logic Network
- Justify and apply the formula for computing the probability of a possible world

Next class on Wed

Markov Logic

- -relation to FOL
- Inference (MAP and Cond. Prob)

Assignment-4 will be posted this evening, due on Nov 29