Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 26

Learning Goals for today's class

You can:

- Provide a formal definition of a PCFG
- Apply a PCFG to compute the probability of a parse tree of a sentence as well as the probability of a sentence
- Describe the content of a treebank
- Describe the process to identify a head of a syntactic constituent
- Compute the probability distribution of a PCFG from a treebank

Lecture Overview

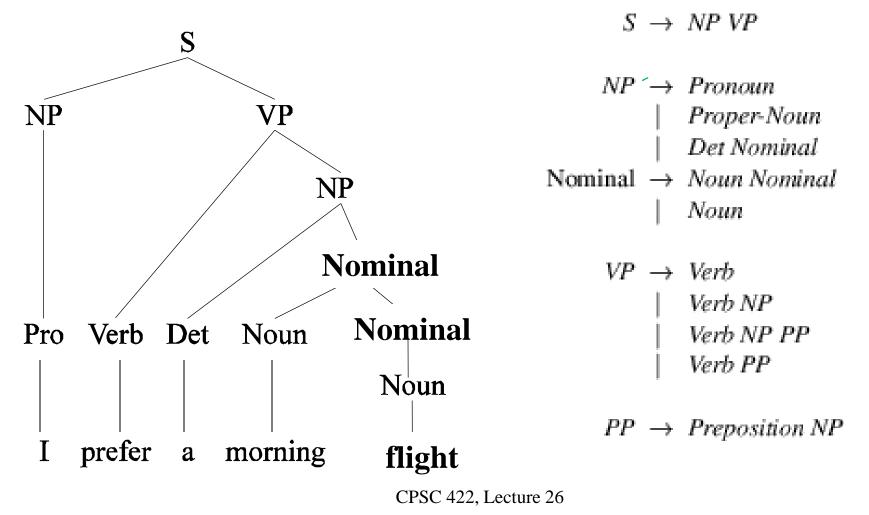
- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning

	Key Constituent	ts:	Exam	ples	Hesd
					nplement)
٠	Noun phrases (NP)	•	(Det)	Ν	(PP)
			the	cat (on the table
•	Verb phrases (VP)	•	(Qual)	V	(NP)
			never	eat	a cat
•	Prepositional phrases (Pl	P).	(Deg)	Ρ	(NP)
			almost	in	the net
•	Adjective phrases(AP)	٠	(Deg)	A	(PP)
			very	happy	about it
•	Sentences (S)	•	(NP)	(-)	(VP)
	CPSC 422. Lecture 26		a mouse	;	ate it

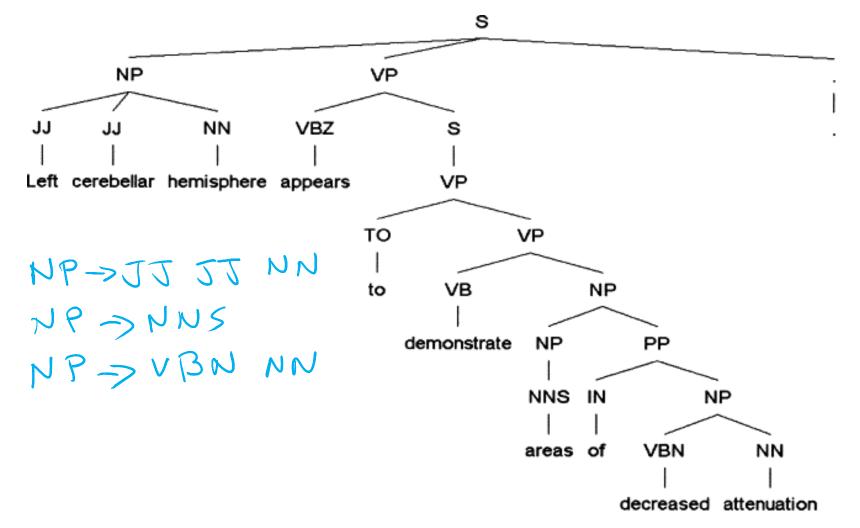
Context Free Grammar (CFG)

- 4-tuple (non-term., term., productions, start)
- (N, ∑, P, S)
- P is a set of rules $A \rightarrow \alpha$; $A \in N$, $\alpha \in (\Sigma \cup N)^*$ $N = \{X,Y\} \quad \sum \{a,b,c\} \quad P = X \rightarrow Xb$

CPSC 422. I


Y->XX

X->acY

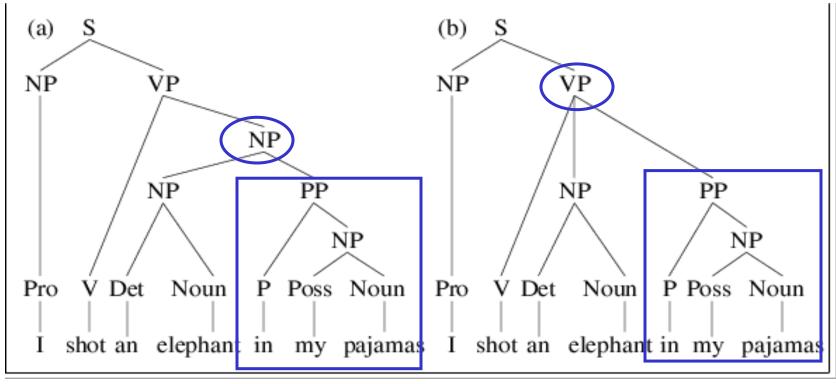

CFG Example

Grammar v	vith example phr	ases	Le	xicon	
$S \rightarrow NP VP$ $NP \rightarrow Pronoun$	I + want a morning flight				trip morning
Proper-Not Det Nomin Nominal → Noun Nomi	al a + flight inal morning + flight	Adjecti	ve →		
Noun VP → Verb Verb NP Verb NP PI Verb PP	flights do want + a flight P leave + Boston + in the morning leaving + on Thursday	Proper-Not Determin Prepositio	$en \rightarrow$ $er \rightarrow$ $on \rightarrow$	Alaska Baltimor Chicago Unite the a an this from to on r	re Los Angeles ed American these that near
$PP \rightarrow Preposition$	NP from + Los Angeles	Conjunctio	$m \rightarrow$	and $ or but $.	

Derivations as Trees

Example of relatively complex parse tree

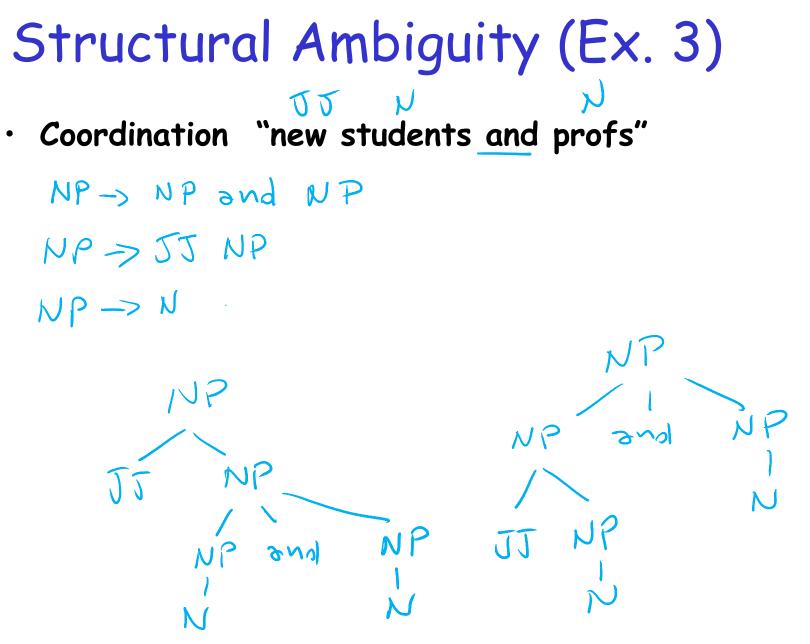
Journal of the American Medical Informatics Association, 2005, Improved Identification of Noun Phrases in Clinical Radiology Reports Using a High-Performance Statistical Natural Language Parser Augmented with the UMLS Specialist Lexicon


Lecture Overview

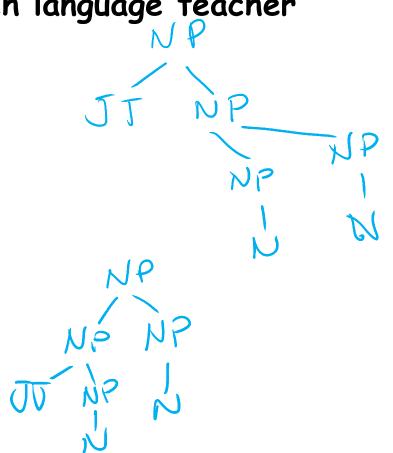
- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning

Structural Ambiguity (Ex. 1)

$VP \rightarrow V NP ; NP \rightarrow NP PP$ $VP \rightarrow V NP PP$


"I shot an elephant in my pajamas"

Structural Ambiguity (Ex.2)


"I saw Mary passing by cs2"

"I saw Mary passing by cs2" (ROOT (ROOT (S **(S** (NP (PRP I)) (NP (PRP I)) (VP (VBD saw) (VP (VBD saw) (NP (NNP Mary)) **(S** (NP (NNP Mary)) **(S** (VP (VBG passing) (VP (VBG passing) (PP (IN by) (PP (IN by) (NP (NNP cs2)))))))) (NP (NNP cs2))))))))

Structural Ambiguity (Ex. 4)

- NP-bracketing "French language teacher"
 - NP->JJNP NP->N NP->NPNP

Lecture Overview

- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning (acquiring the probabilities)
- Intro to Parsing PCFG

Probabilistic CFGs (PCFGs)

- GOAL: assign a probability to parse trees and to sentences
- Each grammar rule is augmented with a conditional probability
 - If these are <u>all the rules for VP</u> and .55
 is P(VP->Verb | VP)
 VP > Verb 55
 - VP -> Verb .55
 - VP -> Verb NP .40
 - VP -> Verb NP NP ??
 - What should ?? be ?
- E. None of the above

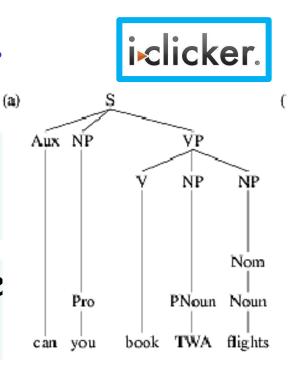
C. 0.05

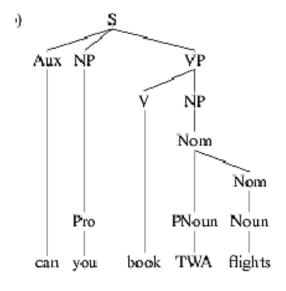
D. 0.42

B. **O**

Probabilistic CFGs (PCFGs)

- GOAL: assign a probability to parse trees and to sentences
- Each grammar rule is augmented with a conditional probability
 - The expansions for a given non-terminal sum to 1

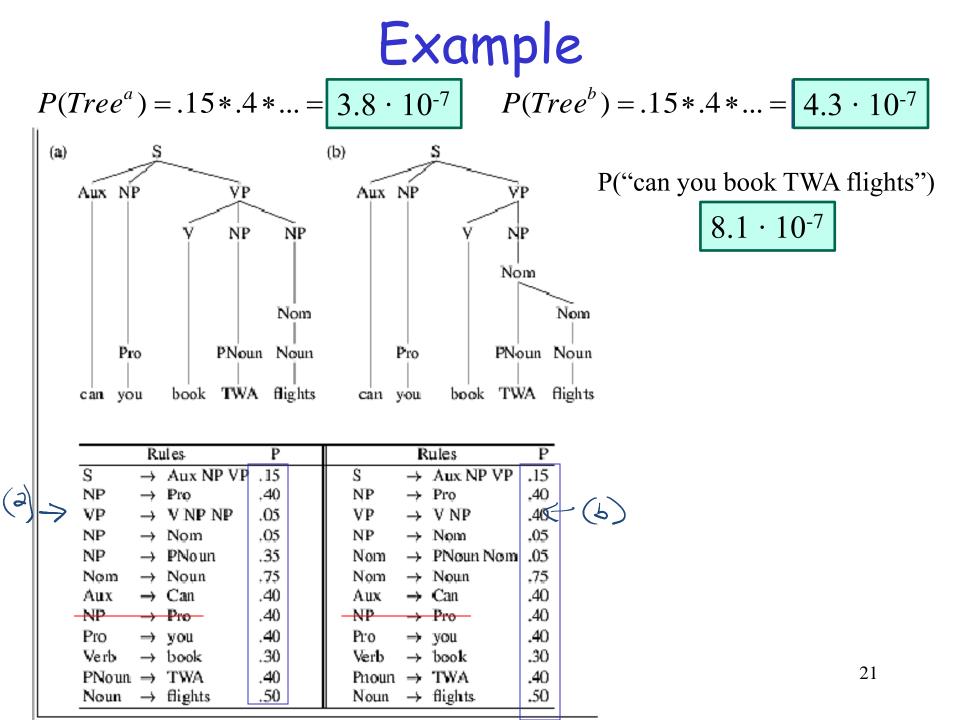

Formal Def: 5-tuple (N, Σ, P, S, D)


Sample PCFG

$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.05] \mid the [.80] \mid d$	a [.15]
$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book	[.10]
$S \rightarrow VP$	[.05]	Noun \rightarrow flights	[.50]
$NP \rightarrow Det Nom$	[.20]	Noun \rightarrow meal	[.40]
$NP \rightarrow Proper-Noun$	[.35]	$Verb \rightarrow book$	[.30]
$NP \rightarrow Nom$	[.05]	$Verb \rightarrow include$	[.30]
$NP \rightarrow Pronoun$	[.40]	Verb \rightarrow want	[.40]
$Nom \rightarrow Noun$	[.75]	$Aux \rightarrow can$	[.40]
$Nom \rightarrow Noun Nom$	[.20]	$Aux \rightarrow does$	[.30]
$Nom \rightarrow Proper-Noun Nom$	[.05]	$Aux \rightarrow do$	[.30]
$VP \rightarrow Verb$	[.55]	$Proper-Noun \rightarrow TWA$	[.40]
$VP \rightarrow Verb NP$	[.40]	$Proper-Noun \rightarrow Denver$	[.40]
$VP \rightarrow Verb NP NP$	[.05]	$Pronoun \rightarrow you[.40] \mid I[.60]$	

PCFGs are used to

- Estimate Prob. of parse tree
 - A. Sum of the probs of all the rules applied
 - B. Product of the probs of all the rules applied
 - Estimate Prob. of a sentence
 A. Sum of the probs of all the parse trees
 - B. Product of the probs of all the parse trees



PCFGs are used to....

• Estimate Prob. of parse tree

• Estimate Prob. to sentences

CPSC 422, Lecture 26

Lecture Overview

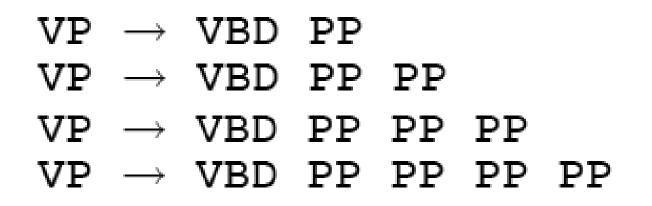
- Recap English Syntax and Parsing
- Key Problem with parsing: Ambiguity
- Probabilistic Context Free Grammars (PCFG)
- Treebanks and Grammar Learning (acquiring the probabilities)

Treebanks

- Definition: corpora in which each sentence has been paired with a parse tree
- These are generally created
 - Parse collection with parser
 - human annotators revise each parse
- Requires detailed annotation guidelines
 - POS tagset
 - Grammar
 - instructions for how to deal with particular grammatical constructions.

Penn Treebank

• Penn TreeBank is a widely used treebank.

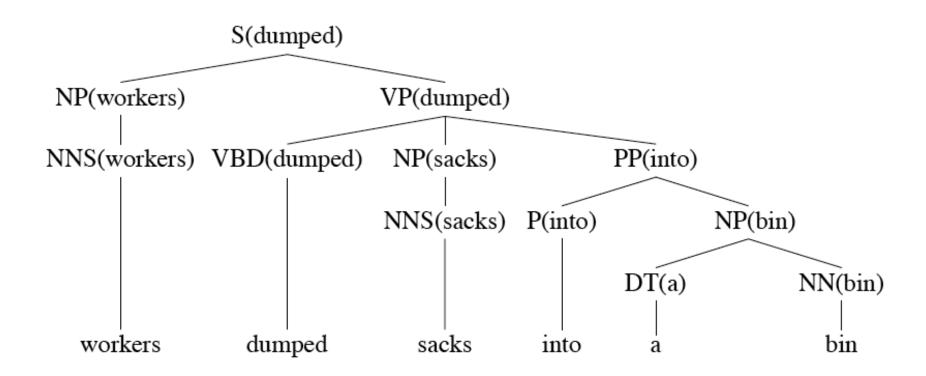

Most well known is the Wall Street
Journal section of the Penn
TreeBank.

1 M wordsfrom the 1987-1989 Wall StreetJournal.

```
( (S ('' '')
    (S-TPC-2
      (NP-SBJ-1 (PRP We) )
      (VP (MD would)
        (VP (VB have)
          ( S
             (NP-SBJ (-NONE- *-1) )
             (VP (TO to)
               (VP (VB wait)
                 (SBAR-TMP (IN until)
                   (S
                      (NP-SBJ (PRP we) )
                      (VP (VBP have)
                        (VP (VBN collected)
                          (PP-CLR (IN on)
                             (NP (DT those)(NNS assets)))))))))))))))))
    (, ,) ('' '')
    (NP-SBJ (PRP he) )
    (VP (VBD said)
      (S (-NONE - *T* - 2)))
    (. .))
                                                            <u>~</u>т
```

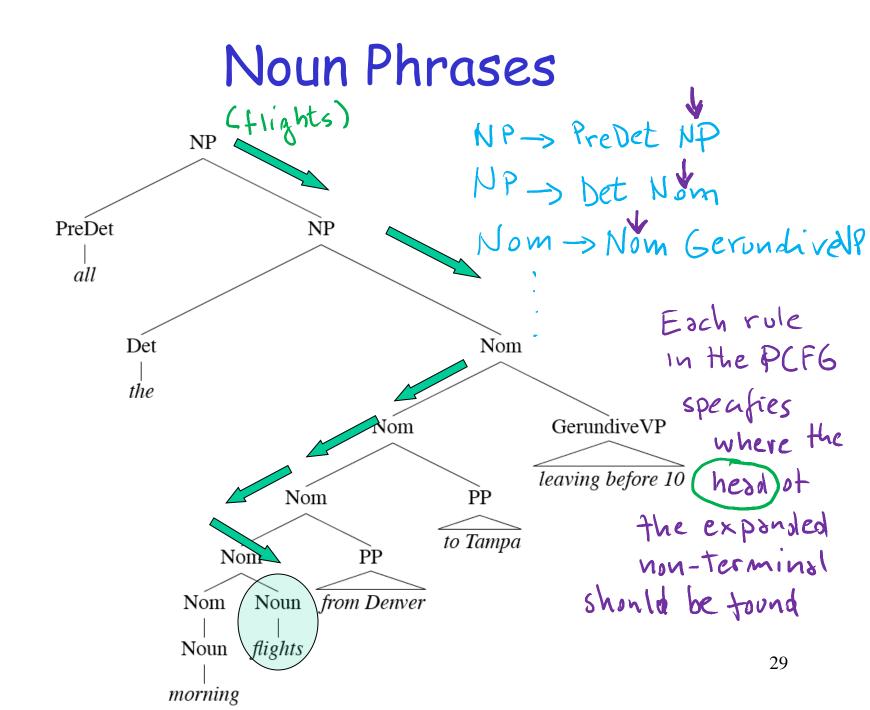
Treebank Grammars

- Such grammars tend to contain lots of rules....
- For example, the Penn Treebank has 4500 different rules for VPs! Among them...



Heads in Trees

- Finding heads in treebank trees is a task that arises frequently in many applications.
 - Particularly important in statistical parsing


 We can visualize this task by annotating the nodes of a parse tree with the heads of each corresponding node.

Lexically Decorated Tree

Head Finding

- The standard way to do head finding is to use a simple set of tree traversal rules specific to each non-terminal in the grammar.
- Each rule in the PCFG specifies where the head of the expanded non-terminal should be found

Acquiring Grammars and Probabilities

Manually parsed text corpora (e.g., PennTreebank)

- Grammar: read it off the parse trees
 Ex: if an NP contains an ART, ADJ, and NOUN then we create the rule NP -> ART ADJ NOUN.
- Probabilities:

Ex: if the NP -> ART ADJ NOUN rule is used 50 times and all NP rules are used 5000 times, then the rule's probability is

txmple it you look at all the parse trees in the bank you find three rules for MP How many times ONP->ARTADJ NOUN 50 2NP -> NOUN 4000 (3) NP-> PRONOUN 950 5000 total # of NP. expansions $P(O|NP) = \frac{50}{5000} = .01$ P(@ NP) = 4000/5000 = - 8 [21so = 1 - (-01 + .8)] $P(G|NP) = 950_{5000} =$ 17 CPSC 422, Lecture 26 31

Next class (Nov 13)

- Parsing Probabilistic CFG: CKY parsing
- PCFG in practice: Modeling Structural and Lexical Dependencies