Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 24

Nov, 1, 2019

Slide credit: Satanjeev Banerjee Ted Pedersen 2003, Jurfsky & Martin 2008-2016

Lecture Overview

- Semantic Similarity/Distance
- Concepts: Thesaurus/Ontology Methods
- Words: Distributional Methods

Why words/concepts similarity is important?

"fast" is similar to "rapid"

"tall" is similar to "height"

Question answering:

Q: "How tall is Mt. Everest?"

Candidate A: "The official height of Mount Everest is 29029 feet"

- Extends to sentence/paragraph similarity
- Summarization: identify and eliminate redundancy, aggregate similar phrase/sentences

•

3 11/1/2019

WordNet: entry for "table"

The **noun** "table" has 6 senses in WordNet. 📈

- 1. table, tabular array (a set of data arranged in rows and columns) "see table 1"
- 2. table (a piece of furniture having a smooth flat top that is usually supported by one or more vertical legs) "it was a sturdy table"
- 3. table (a piece of furniture with tableware for a meal laid out on it) "I reserved a table at my favorite restaurant"
- 4. mesa, table (flat tableland with steep edges) "the tribe was relatively safe on the mesa but they had to descend into the valley for water"
- 5. table (a company of people assembled at a table for a meal or game) "he entertained the whole table with his witty remarks"
- 6. board, table (food or meals in general) "she sets a fine table"; "room and board"

The **verb** "table" has 1 sense in WordNet.

postpone, prorogue, hold over, put over,
 table, shelve, set back, defer, remit, put off –
 (hold back to a later time; "let's postpone the exam")

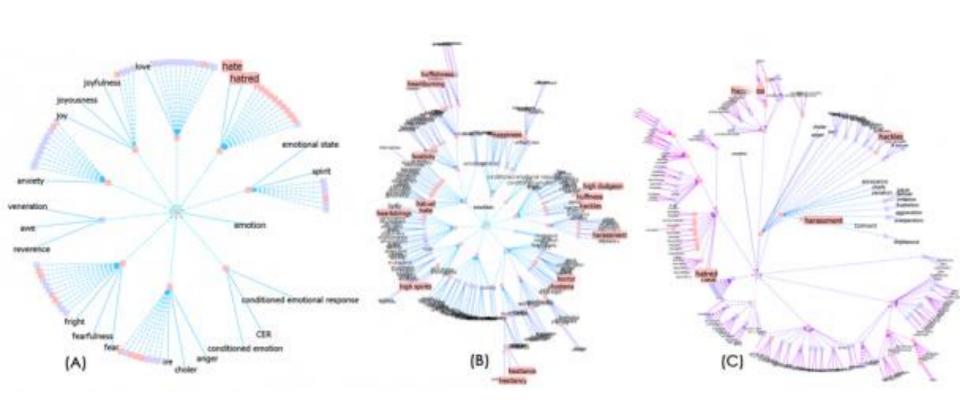
WordNet Relations (between synsets!) Nouns

Relation	Definition	Example		
Hypernym	From concepts to superordinates	$\mathit{breakfast} ightarrow \mathit{meal}$		
Hyponym	From concepts to subtypes	meal $ ightarrow$ lunch		
Has-Member	From groups to their members	$\mathit{faculty} o \mathit{professor}$		
Member-Of	From members to their groups	copilot ightarrow crew		
Has-Part	From wholes to parts	table ightarrow leg		
Part-Of	From parts to wholes	course ightarrow meal		
Antonym	Opposites	leader o follower		

Moreland

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly \rightarrow travel$
Troponym	From events to their subtypes	$walk \rightarrow stroll$
Entails	From events to the events they entail	$snore \rightarrow sleep$
Antonym	Opposites	increase ⇔ decrease

Visualizing Wordnet Relations



C. Collins, "WordNet Explorer: Applying visualization principles to lexical semantics," University of Toronto, Technical Report kmdi 2007-2, 2007.

Semantic Similarity/Distance: example

(n) table -- (a piece of furniture having a smooth (n) mesa, table -flat top that is usually (flat tableland with supported by one or steep edges) more vertical legs) (n) hill (a local and well-(n) lamp (a piece of defined elevation of the furniture holding one or land) more electric light bulbs)

dissimilar

Semantic Similarity/Distance

Between two concepts in an ontology, e.g., between two senses in Wordnet

What would you use to compute it?

- A. The distance between the two concepts in the underlying hierarchies / graphs
- B. The glosses of the concepts
- C. None of the above

D. Both of the above

Gloss Overlaps ≈ Relatedness

concepts

- Lesk's (1986) idea: Related word senses are (often) defined using the same words. E.g.
 - bank(1): "a financial institution"
 - bank(2): "sloping land beside a body of water"
 - lake: "a body of water surrounded by land"

Gloss Overlaps ≈ Relatedness

- Lesk's (1986) idea: Related word senses are (often) defined using the same words. E.g.
 - bank(1): "a financial institution"
 - bank(2): "sloping land beside a body of water"
 - lake: "a body of water surrounded by land"

Gloss Overlaps ≈ Relatedness

- Lesk's (1986) idea: Related word senses are (often) defined using the same words. E.g.
 - bank(1): "a financial institution"
 - bank(2): "sloping land beside a body of water"
 - lake: "a body of water surrounded by land"
- Gloss overlaps = # content words common to two glosses ≈ relatedness
 - Thus, relatedness (bank(2), lake) = 3
 - And, relatedness (bank(1), lake) = 0

Limitations of (Lesk's) Gloss Overlaps

- Most glosses are very short.
 - So not enough words to find overlaps with.
- Solution?
- Extended gloss overlaps
 - Add glosses of synsets connected to the input synsets.

Extending a Gloss

sentence: "the penalty meted out to one adjudged guilty"

bench: "persons who hear cases in a court of law"

overlapped words = 0

Extending a Gloss

final judgment: "a judgment disposing of the case before the court of law"

hypernym

sentence: "the penalty meted out to one adjudged guilty"

bench: "persons who hear cases in a court of law"

overlapped words = 0

Extending a Gloss

final judgment: "a judgment disposing of the case before the court of law" hypernym bench: "persons sentence: "the who hear cases in a penalty meted out to one adjudged guilty" <u> court</u> of <u>law</u>"

overlapped words = 2

Creating the Extended Gloss Overlap Measure

How to measure overlaps?

Which relations to use for gloss extension?

How to Score Overlaps?

- Lesk simply summed up overlapped words.
- But matches involving phrases phrasal matches – are rarer, and more informative
 - E.g. "court of law" "body of water"
- Aim: Score of n words in a phrase > sum of scores of *n* words in shorter phrases
- Solution: Give a phrase of n words a score of n^2
 - "court of law" gets score of 9.
 - bank(2): "sloping <u>land</u> beside a <u>body of water</u>"
 - lake: "a body of water surrounded by land"

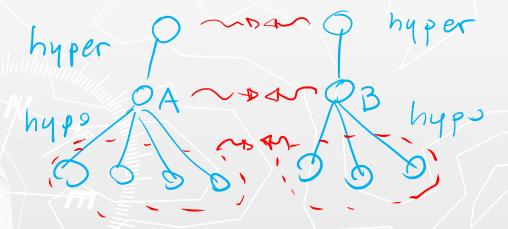
Which Relations to Use?

Typically include...

- ► Hypernyms ["car" → "vehicle"]
- ► Hyponyms ["car" → "convertible"]
- Meronyms ["car" → "accelerator"]

Extended Gloss Overlap Measure

- Input two synsets A and B
- Find phrasal gloss overlaps between A and B
- For *each relation*, compute phrasal gloss overlaps between every synset connected to A, and every synset connected to B



compute phrasal score over lap

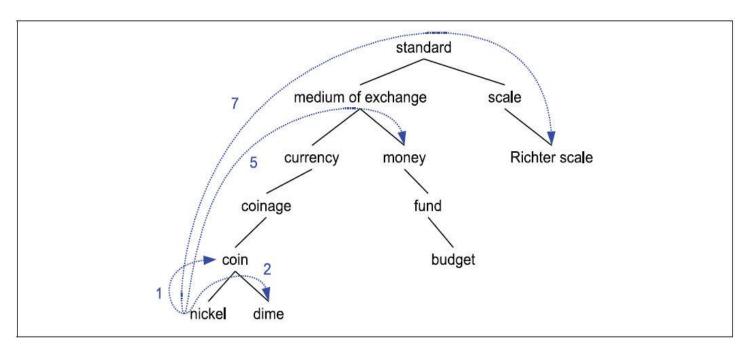
Add phrasal scores to get relatedness of A and B

A and B can be from different parts of speech! ,

Distance: Path-length

Path-length sim based on is-a/hypernyms hierarchies

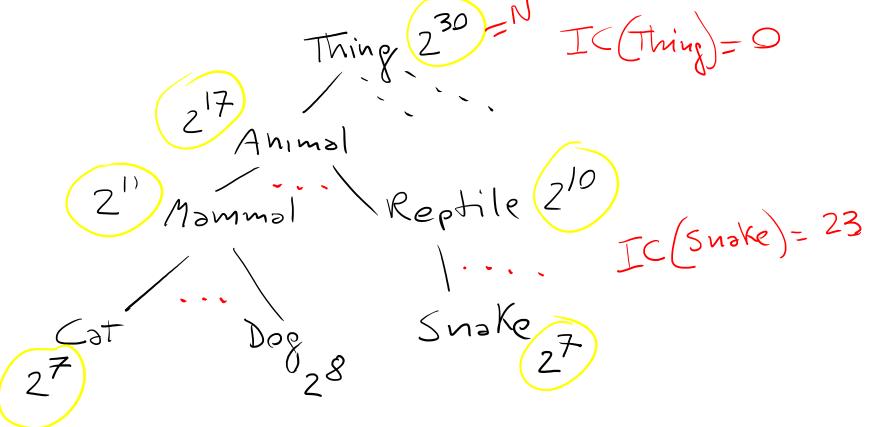
$$\operatorname{sim}_{\operatorname{path}}(c_1, c_2) = 1 / \operatorname{pathlen}(c_1, c_2)$$



But this is assuming that all the links are the same....

Encode the same semantic distance....

Probability of a concept/sense and its info content



$$P(c) = \frac{count(c)}{N}$$

$$IC(c) = -\log P(c)$$
Information Content
$$CPSC 422 \text{ Lecture } 24$$

CPSC 422, Lecture 24

 Similarity should be proportional to the information that the two concepts share... what is that?

$$P(c) = \frac{count(c)}{N}$$

$$IC(c) = -\log P(c)$$

$$LCS(c_1, c_2)$$
Information
$$Content$$
Lowest Common Subsumer

$$sim_{resnik}(c_1, c_2) = -\log P(LCS(c_1, c_2))$$

Given this measure of similarity

$$\sin_{\text{resnik}}(c_1, c_2) = -\log P(LCS(c_1, c_2))$$

Are these two the same?

 $sim_{resnik}(Dog, Snake)$ $sim_{resnik}(Mammal, Reptile)$

A. Yes

Is this reasonable? Well we contain the stern tives --
Yes

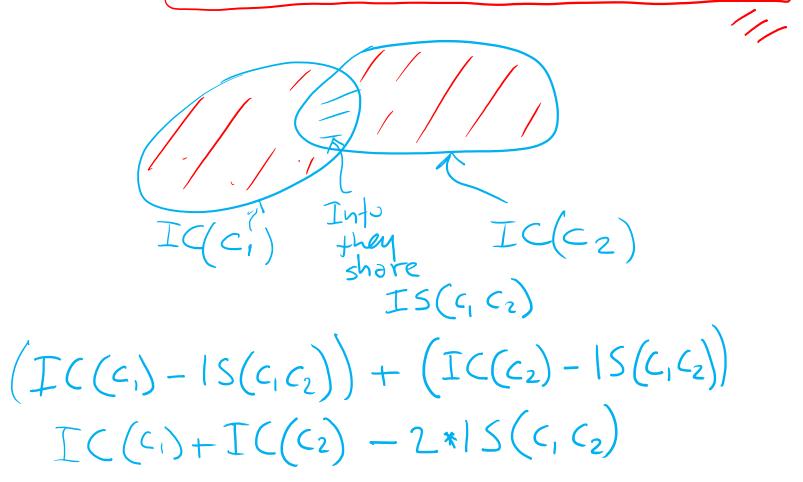
B. No

C. Cannot tell

PSC 422, Lecture 19

A. Yes

- · One of best performers Jiang-Conrath distance
- · How much information the two DO NOT share



$$(T((c_1) - 1S(c_1c_2)) + (T((c_2) - 1S(c_1c_2))$$

$$T((c_1) + T((c_2) - 2*1S(c_1c_2))$$

$$\operatorname{dist}_{JC}(c_1, c_2) = ((-\log P(c_1)) + (-\log P(c_2))) + (2 \times \log P(LCS(c_1, c_2)))$$

$$dist_{JC}(c_1, c_2) = 2 \times \log P(LCS(c_1, c_2)) - (\log P(c_1) + \log P(c_2))$$

- This is a measure of distance. Reciprocal for similarity
 - y dist JC
- Problem for measures working on hierarchies/graphs: only compare concepts associated with words of one part-of speech (typically nouns)

- One of best performers Jiang-Conrath distance
- · How much information the two DO NOT share

$$\operatorname{dist}_{JC}(c_1, c_2) = ((-\log P(c_1)) + (-\log P(c_2))) - (2 \times -\log P(LCS(c_1, c_2)))$$

$$dist_{JC}(c_1, c_2) = 2 \times \log P(LCS(c_1, c_2)) - (\log P(c_1) + \log P(c_2))$$

- This is a measure of distance. Reciprocal for similarity!
- Problem for measures working on hierarchies/graphs: only compare concepts associated with words of one part-of speech (typically nouns)

woukedon Thing 230 dist_J_(Dog, Snake) = (2x-13)+ (22+23)=19 distro(Mammal, Reptile)= (2x-13)+ Simes (Mammal, Reptile)=13 (19+20)=13

CPSC 422, Lecture 24

Lecture Overview

- Semantic Similarity/Distance
- Concepts: Thesaurus/Ontology Methods
- Words: Distributional Methods Word Similarity (WS)

Word Similarity: Distributional Methods

- Do not have any thesauri/ontologies for target language (e.g., Russian)
- · If you have thesaurus/ontology, still
 - Missing domain-specific (e.g., technical words)
 - Poor hyponym knowledge (for V) and nothing for Adj and Adv
 - Difficult to compare senses from different hierarchies (although extended Lesk can do this)
 - · Solution: extract similarity from corpora
 - Basic idea: two words are similar if they appear in similar contexts

Intuition of distributional word similarity

Example: Suppose I asked you what is tesgüino?

```
A bottle of tesgüino is on the table Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.
```

- From context words humans can guess tesguino means
 - an alcoholic beverage like beer
- Intuition for algorithm:
 - Two words are similar if they have similar word contexts.

WS Distributional Methods (1)

Word-Word matrix: Sample contexts \pm 7 words

sugar, a sliced lemon, a tablespoonful of (apricot) their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**.

preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from for the purpose of gathering data and information necessary for the study authorized in the

Portion of matrix from the Brown corpus

	aardvark	computer	data	pinch	result	sugar	•••
ے apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Simple example of Vectors Models aka "embeddings".

- Model the meaning of a word by "embedding" in a vector space.
- The meaning of a word is a vector of numbers

WS Distributional Methods (2)

 More informative values (referred to as weights or measure of association in the literature)

· Point-wise Mutual Information

$$assoc_{PMI}(w, w_i) = \log_2 \frac{P(w, w_i)}{P(w)P(w_i)}$$

if independently unrelated

· t-test

$$assoct_{t-test}(w, w_i) = \frac{P(w, w_i) - P(w)P(w_i)}{\sqrt{P(w)P(w_i)}}$$
CPSC 422, Lecture 24

Positive Pointwise Mutual

- PMI ranges from not mation
- But the negative values are problematic
 - Things are co-occurring less than we expect by chance
 - · Unreliable without enormous corpora
 - Imagine w1 and w2 whose probability is each 10⁻⁶
 - Hard to be sure p(w1,w2) is significantly different than 10^{-12}
 - Plus it's not clear people are good at "unrelatedness"
- Positive PMI (PPMI) between word1 and word2:

$$\mathbf{PPMI}(word_1, word_2) = \max \left(\log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0 \right)$$

PMI example
$$assoc_{PMI}(w, w_i) = \log_2 \frac{P(w, w_i)}{P(w)P(w_i)}$$

Assume
$$w$$
, w_j >ppear with equal frequency $\frac{1}{2^{19}}$
 $P(w) = 2^{-10}$
 $P(w_i) = 2^{-10}$

A $2^{-10} + 2^{-20}$ if the words are completely independent

 $P(w,w_i) = 2^{-10}$ if the words appear always together

A
$$\partial SSOCPMI = \frac{2^{-20}}{2^{-10} \times 2^{-10}} = \frac{1000}{2} = 0$$
B $\partial SSOCPMI = \frac{2^{-10} \times 2^{-10}}{2^{-10} \times 2^{-10}} = \frac{1000}{2} = \frac$

Other popular vector representations

Dense vector representations (less dimensions):

- 1. Singular value decomposition applied to word-word PointWise-MI matrix
- 2. Neural-Network-inspired models (skip-grams, CBOW)

WS Distributional Methods (3)

· Similarity between vectors

$$sim_{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v}}{\|\vec{v}\|} \bullet \frac{\vec{w}}{\|\vec{v}\|} = \frac{\vec{v} \bullet \vec{w}}{\|\vec{v}\| \times \|\vec{w}\|} = cos(\alpha)$$

Not sensitive to extreme values

$$sim_{Jaccard}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)}$$
Normalized (weighted)

number of overlapping

features
$$v_i = v_i$$

Learning Goals for today's class

You can:

- Describe and Justify metrics to compute the similarity/distance of two concepts in an ontology
- Describe and Justify distributional metrics to compute the similarity/distance of two words (or phrases) in a Natural Language

Assignment-3 out - due Nov 18 (8-18 hours - working in pairs is strongly advised)

Next week I will be away attending EMNLP:

Jordon Johnson will sub for me Mon and Wed (Fri class is cancelled)

 Material that will be covered: Natural language Processing (Context free grammars and parsing)