Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 22

Oct, 28, 2019

Slide credit: some from Prof. Carla P. Gomes (Cornell) some slides adapted from Stuart Russell (Berkeley), some from Prof. Jim Martin (Univ. of Colorado)

CPSC 422, Lecture 22

Lecture Overview

- SAT : example
- First Order Logics
 - Language and Semantics
 - Inference

Satisfiability problems (SAT)

Consider a CNF sentence, e.g.,

 $(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$

Is there an interpretation in which this sentence is true (i.e., that is a model of this sentence)?

Many combinatorial problems can be reduced to checking the satisfiability of propositional sentencesand returning a model

Encoding the Latin Square Problem in Propositional Logic

In combinatorics and in experimental design, a Latin square is

- an *n* × *n* array
- filled with *n* different symbols,
- each occurring exactly once in each row and exactly once in each column.
- Here is an example:

Α	В	С
С	А	В
В	С	А

Here is another one:

Encoding Latin Square in Propositional Logic: Propositions Variables must be binary! (They must be propositions)

Each variables represents a color assigned to a cell *i j*.

Assume colors are encoded as an integer \boldsymbol{k}

$$x_{ijk} \in \{0,1\}$$

Assuming colors are encoded as follows (black, 1) (red, 2) (blue, 3) (green, 4) (purple, 5)

2

3

How many vars/propositions overall?

Encoding Latin Square in Propositional Logic Variables must be binary! (They must be propositions) Each variables represents a color assigned to a cell. Assume colors are encoded as integers 2 3 $x_{iik} \in \{0,1\}$ Assuming colors are encoded as follows (black, 1) (red, 2) (blue, 3) (green, 4) (purple, 5) x_{23} True or false, ie. 0 or 1 with respect to the interpretation represented by the picture?

How many vars/propositions overall?

Encoding Latin Square in Propositional Logic: Clauses

• Some color must be assigned to each cell (clause of length n); i-clicker.

• No color is repeated in the same row (sets of negative binary clauses);

$$\forall_{ik}(\neg x_{i1k} \lor \neg x_{i2k}) \land (\neg x_{i1k} \lor \neg x_{i3k}) \dots (\neg x_{i1k} \lor \neg x_{ink}) \dots (\neg x_{i(n-1)k} \lor \neg x_{ink})$$

Encoding Latin Square in Propositional Logic: Clauses

Some color must be assigned to each cell (clause of length n);

$$\forall_{ij} (x_{ij1} \lor x_{ij2} \dots x_{ijn})$$

No color repeated in the same row (sets of negative binary clauses);

Encoding Latin Square Problems in Propositional Logic: FULL MODEL

 n^3

Variables: x_{ijk} cell i, j has color k; i, j, k=1,2, ..., n. $x_{ijk} \in \{0,1\}$

Each variables represents a color assigned to a cell.

- Clauses: $O(n^4)$
- Some color must be assigned to each cell (clause of length n);

$$\forall_{ij} (x_{ij1} \lor x_{ij2} \dots x_{ijn})$$

No color repeated in the same row (sets of negative binary clauses);

$$\forall_{ik} (\neg x_{i1k} \vee \neg x_{i2k}) \land (\neg x_{i1k} \vee \neg x_{i3k}) \dots (\neg x_{i1k} \vee \neg x_{ink}) \dots (\neg x_{i(n-1)k} \vee \neg x_{ink})$$

• No color repeated in the same column (sets of negative binary clauses);

$$\forall_{jk}(\neg x_{1jk} \lor \neg x_{2jk}) \land (\neg x_{1jk} \lor \neg x_{3jk}) \dots (\neg x_{1jk} \lor \neg x_{njk}) \dots (\neg x_{(n-1)jk} \lor \neg x_{njk})$$

Relationships between different LOGICS (better with colors) First Order Logic Datalog $p(X) \leftarrow q(X) \wedge r(X,Y)$ $\forall X \exists Yp(X,Y) \Leftrightarrow \neg q(Y)$ $r(X,Y) \leftarrow S(Y)$ $P(\partial_1, \partial_2)$ $S(\partial_1), Q(\partial_2)$ $-q(\partial_5)$ PDCL Propositional Logic pt snf $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$ rESAGAP CPSC 422, Lecture 21 Slide 11

Lecture Overview

- Finish SAT (example)
- First Order Logics
 - Language and Semantics
 - Inference

Representation and Reasoning in Complex domains (from 322)

In complex domains

It is expressing knowledge
with propositions can be the quite limiting
\$ up s_2 up s_3 + 0 k cb_1 + 0 k cb_2 + 0 k cb

 It is often natural to consider individuals and their properties

(from 322) What do we gain....

- By breaking propositions into relations applied to individuals?
 - Express knowledge that holds for set of individuals (by introducing um isbles)

 $live(W) <- connected_to(W,W1) \land live(W1) \land wire(W) \land wire(W1).$

- We can **ask generic queries** (i.e., containing
 - ? connected_to(W, w_1)

"Full" First Order Logics (FOL)

- LIKE DATALOG: Whereas propositional logic assumes the world contains facts, FOL (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

FURTHERMORE WE HAVE

- More Logical Operators:....
- Equality: coreference (two terms refer to the same object)
- Quantifiers
 - ✓ Statements about unknown objects
 - ✓ Statements about classes of objects

Syntax of FOL

Constants Predicates Functions Variables Connectives Equality Quantifiers KingJohn, 2, ,... Brother, >,... Sqrt, LeftLegOf,... x, y, a, b,... \neg , \Rightarrow , \land , \lor , \Leftrightarrow = \forall , \exists

Atomic sentences

- **Term** is a *function* (*term*₁,...,*term*_n) or *constant* or *variable*
- Atomic sentence is predicate $(term_1, ..., term_n)$ or $term_1 = term_2$

Complex sentences

Complex sentences are made from atomic sentences using connectives

 $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Longrightarrow S_2, \quad S_1 \Leftrightarrow S_2,$

E.g. Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)

 $\forall x P(x)$ is true in an interpretation I iff P is true with x being each possible object in I

 $\exists x P(x)$ is true in an interpretation I iff P is true with x being some possible object in I

Truth in first-order logic

 $\neg A \land (B \Longrightarrow C),$

 \succ

ABC

F T T

Like in Prop. Logic a sentences is true with respect to an interpretation

In FOL interpretations are much more complex but still same idea possible configuration of the world CONSTANTS 1 -> Objects 2 objects A [] symbols (Predicotes) relations Eurchans) -> tunctions C, Cz 2 CONSTANT SYMBOLS {C1 C2} 1 unary Preshicale P -> {2} 1 binary Predicate Q $\longrightarrow f\{\Delta, \Delta, \zeta\}$ iclicker. A. yes 15 Vx P(x) TRUE? B₋no Slide 19 CPSC 422, Lecture 22

Truth in first-order logic

Like in Prop. Logic a sentences $\neg A \land B \Longrightarrow C$, is true with respect to an RC interpretation \succ 7 7 In FOL interpretations are much more complex but still same idea: possible configuration of the world CONSTANIS 2 objects A [] Predicates -> relations Functions) -> tunctions 2 CONSTANT SYMBOLS {C1 C2} unary Preshicale P $\{\Delta\}$ 1 binary Presticate Q 15 Vx P(x) TRUE? CPSC 422, Lecture 22

Same interpretation with sets

Since we have a one to one mapping between symbols and object we can use symbols to refer to objects

• {R, J, RLL, JLL, C}

Property Predicates

- Person = {R, J}
- Crown = {C}
- King = {J}

Relational Predicates

- Brother = { <R,J>, <J,R>}
- OnHead = {<C,J>}

Functions

• LeftLeg = {<R, RLL>, <J, JLL>} CPSC 422, Lecture 22

crown

How many Interpretations with....

- 5 Objects and 5 symbols
 - {R, J, RLL, JLL, C}
- 3 Property Predicates (Unary Relations)
 - Person R J RLL JLL C
 - Crown % % % % %
 - King
- **2 Relational Predicates**
 - Brother 25 possibilities; each one can be 9, 502
 - OnHead
- 1 Function
 - LeftLeg $5^{5} \sqrt{2^{4} 5} \times (2^{5}) \times (2^{25}) \times 5^{5}$

A. 2⁵

B. 2²⁵ C. 25²

i**⊳licker**.

To summarize: Truth in first-order logic

- Sentences are true with respect to an **interpretation**
- World contains objects (**domain elements**)
- Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → functional relations
- An atomic sentence *predicate(term₁,...,term_n)* is true iff the **objects** referred to by *term₁,...,term_n* are in the **relation** referred to by *predicate*

Quantifiers

Allows us to express

- Properties of collections of objects instead of enumerating objects by name
- Properties of an unspecified object

Universal: "for all" ∀ Existential: "there exists" ∃

Universal quantification

∀<variables> <sentence>

Everyone at UBC is smart: $\forall x At(x, UBC) \Rightarrow Smart(x)$

 $\forall x P$ is true in an interpretation I iff P is true with x being each possible object in I

Equivalent to the conjunction of instantiations of P

At(KingJohn, UBC) \Rightarrow Smart(KingJohn) \land At(Richard, UBC) \Rightarrow Smart(Richard) \land At(Ralphie, UBC) \Rightarrow Smart(Ralphie) \land ...

Existential quantification

∃<variables> <sentence>

Someone at UBC is smart: $\exists x \operatorname{At}(x, UBC) \land \operatorname{Smart}(x)$

 $\exists x P \text{ is true in an interpretation } I \text{ iff } P \text{ is true with } x \text{ being some possible object in } I$

Equivalent to the disjunction of instantiations of *P*

At(KingJohn, UBC) ∧ Smart(KingJohn)

- ✓ At(Richard, UBC) ∧ Smart(Richard)
- v At(Ralphie, UBC) ^ Smart(Ralphie)

V ...

Properties of quantifiers

 $\exists x \forall y \text{ is not the same as } \forall y \exists x \\ \exists x \forall y \text{ Loves}(x,y) \end{cases}$

• "There is a person who loves everyone in the world" $\forall y \exists x Loves(x,y)$

• "Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other
∀x Likes(x,IceCream)∀x Likes(x,IceCream)∃x Likes(x,Broccoli)¬∀x ¬Likes(x,Broccoli)

Lecture Overview

- Finish SAT (example)
- First Order Logics
 - Language and Semantics
 - Inference

FOL: Inference

Resolution Procedure can be generalized to FOL

- Every formula can be rewritten in logically equivalent CNF
 - Additional rewriting rules for quantifiers
- **Similar Resolution step**, but variables need to be unified (like in DATALOG)

[In(x,y) v 7 Charged(x) $\Theta = 5 Z_{\chi} / Y_{\chi}$ (Th(Z,V) V Connected (Z) > Charged (X) V Connected (X)

NLP Practical Goal for FOL: the ultimate Web question-answering system?

Map NL queries into FOPC so that answers can be effectively computed

What African countries are not on the Mediterranean Sea?

 $\exists c \ Country(c) \land \neg Borders(c, Med.Sea) \land In(c, Africa)$

• Was 2007 the first El Nino year after 2001? $ElNino(2007) \land \neg \exists y Year(y) \land After(y,2001) \land$ $Before(y,2007) \land ElNino(y)$

Learning Goals for today's class

You can:

- Explain differences between Proposition Logic and First Order Logic
- Compute number of interpretations for FOL
- Explain the meaning of quantifiers
- Describe application of FOL to NLP: Web question answering

Next class Wed

- Ontologies (e.g., Wordnet, Probase), Description Logics...
- Midterm will be returned Fri or next Mon

Assignment-3 will be out tonight