Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 2

Sep, 6, 2019

n

WAITLISTS INFO

https://www.cs.ubc.ca/students/undergrad/courses/waitlists

Lecture Overview

Value of Information and Value of Control

Recap Markov Chain

Markov Decision Processes (MDPs)

Formal Specification and example

422 big picture

StarAl (statistical relational Al)
Hybrid: Det +Sto
Prob CFG Parsing
Prob Relational Models
Markov Logics

Deterministic Stochastic

Logics
First Order Logics
Ontologies

- Full Resolution
- SAT

Query

Planning

Belief Nets

Approx. : Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx.: Particle Filtering

Undirected Graphical Models
Markov Networks
Conditional Random Fields

Markov Decision Processes and

Partially Observable MDP

- Value Iteration
- Approx. Inference

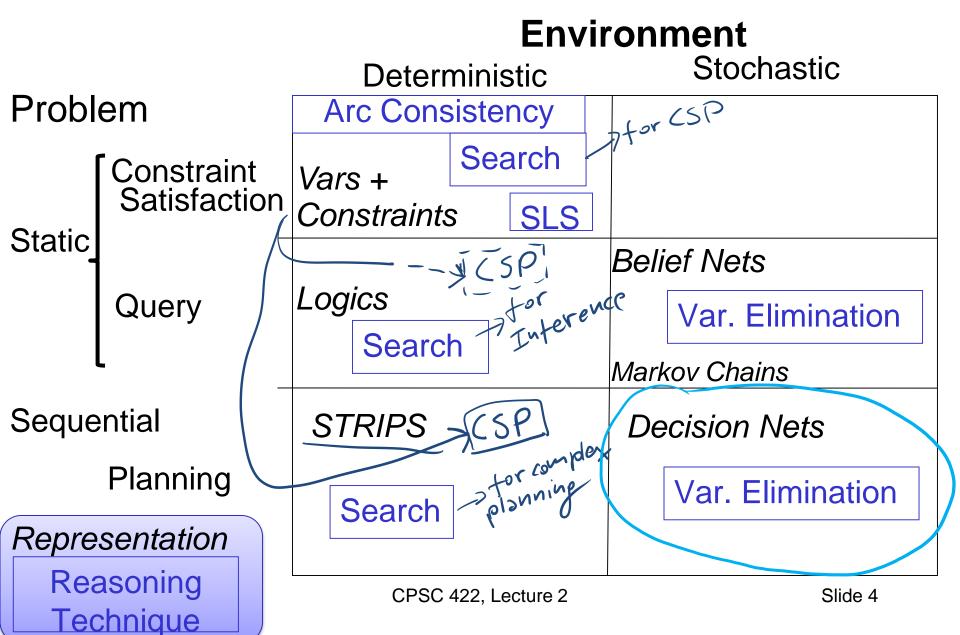
Reinforcement Learning

Applications of Al

Representation

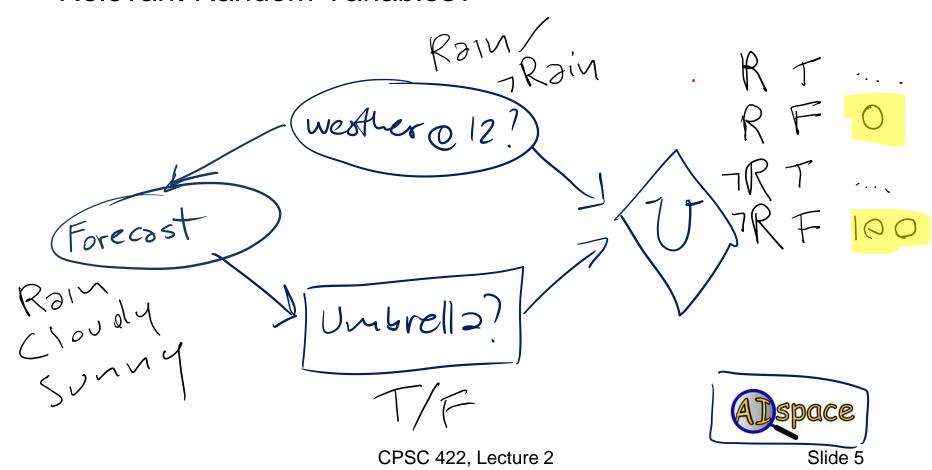
Reasoning Technique

Cpsc 322 Big Picture



Simple Decision Net

- Early in the morning. Shall I take my umbrella today? (I'll have to go for a long walk at noon)
- Relevant Random Variables?

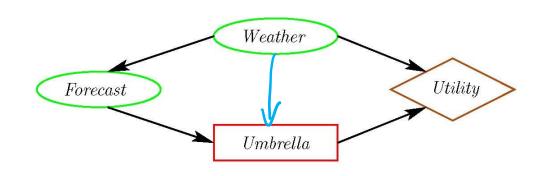


Polices for Umbrella Problem

 A policy specifies what an agent should do under each circumstance (for each decision, consider the parents of the decision node)

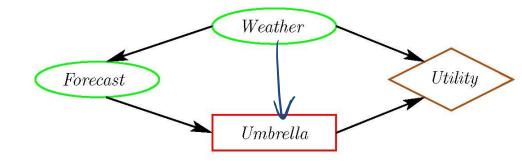
In the *Umbrella* case:

Value of Information



- Early in the morning. I listen to the weather forecast, shall I take my umbrella today? (I'll have to go for a long walk at noon)
- What would help the agent make a better Umbrella decision?

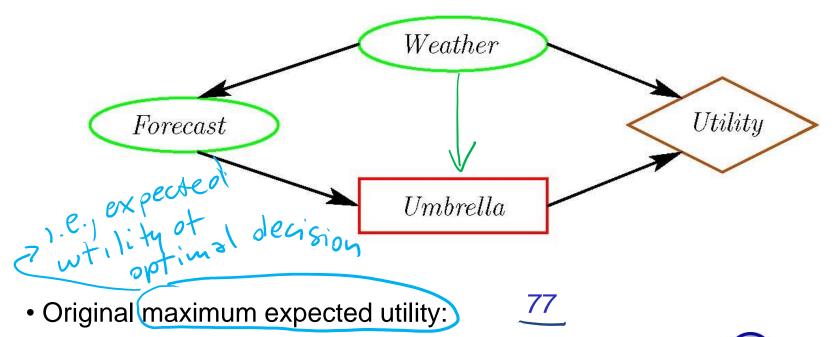
Value of Information



- The value of information of a <u>random variable</u> X for decision D is: EU (Knowing X) EU (unt Knowing)
 the utility of the network with an arc from X to D minus the utility of the network without the arc.
- Intuitively:
 - The value of information is always
 - It is positive only if the agent changes its policy

Value of Information (cont.)

 The value of information provides a bound on how much you should be prepared to pay for a sensor. How much is a perfect weather forecast worth?



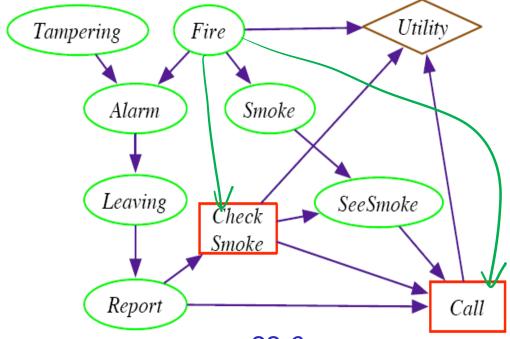
Maximum expected utility when we know Weather: 91

Alspac

• Better forecast is worth at most: /4

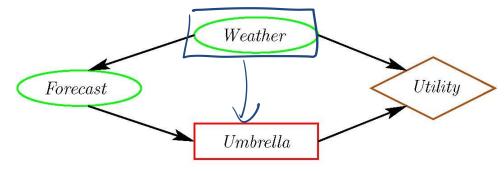
Value of Information

• The value of information provides a bound on how much you should be prepared to pay for a sensor. How much is a **perfect** fire sensor worth?



- Original maximum expected utility: -22.6
- Maximum expected utility when we know Fire:
- Perfect fire sensor is worth: 20.6

Value of Control



 What would help the agent to make an even better Umbrella decision? To maximize its utility.

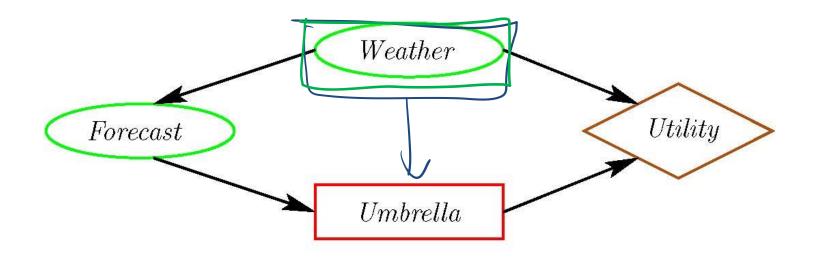
	Weather	Umbrella	Value
	Rain	true	70
	Rain	false	0
	noRain	true	20
→	noRain	false	100

• The value of control of a variable X is:

the utility of the network when you make X a decision variable **minus** the utility of the network when X is a random variable.

Value of Control

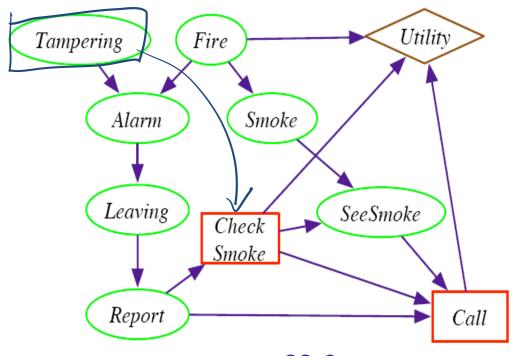
What if we could control the weather?



- Original maximum expected utility: 77
- Maximum expected utility when we control the weather: 100
- Value of control of the weather: 23

Value of Control

What if we control Tampering?



- Original maximum expected utility: -22.6
- Maximum expected utility when we control the Tampering: -20.7
- Value of control of Tampering:
- Let's take a look at the optimal policy
- Conclusion: do not tamper with fire alarms!

Lecture Overview

Value of Information and Value of Control

Recap Markov Chain

Markov Decision Processes (MDPs)

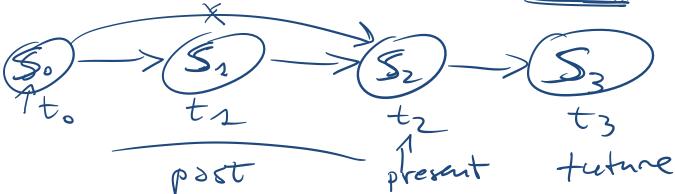
Formal Specification and example

Lecture Overview (from my 322)

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

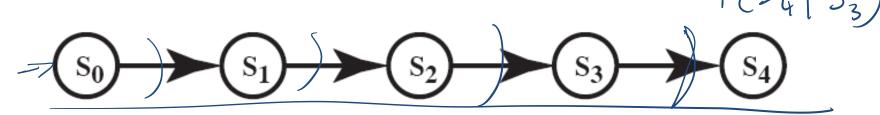
Simplest Possible DBN

• One random variable for each time slice: let's assume S_t represents the state at time t. with domain $\{v_1 \dots v_n\}$



- Each random variable depends only on the previous one
- Thus $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$
- Intuitively S_t conveys all of the information about the history that can affect the future states.
- _ "The future is independent of the past given the present."

Simplest Possible DBN (cont') $P(s_4 \mid S_3)$



• How many CPTs do we need to specify? $4 P(S_1|S_0) P(S_2|S_1) etc.$

A. 1

C.2

D. 3

B. 4

- Stationary process assumption: the mechanism that regulates how state variables change overtime is stationary, that is it can be described by a single transition model
- · P(St|St-1) is the same for all t

Stationary Markov Chain (SMC)

A stationary Markov Chain: for all t >0

- $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$ and Markov assumption
- $P(S_{t+1}|S_t)$ is the same 5 + 30

So we only need to specify?

A.
$$P(S_{t+1}|S_t)$$
 and $P(S_0)$

B.
$$P(S_0)$$

$$\mathbf{C} \cdot P(S_{t+1}|S_t)$$

$$\mathbf{D.} P(S_t | S_{t+1})$$

Stationary Markov Chain (SMC)

A stationary Markov Chain: for all t >0

- $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$ and Markov assumption
- $P(S_{t+1}|S_t)$ is the same 5+84 on S_t

We only need to specify $P(S_t)$ and $P(S_{t+1}|S_t)$

- Simple Model, easy to specify
- Often the natural model <
- The network can extend indefinitely
- Variations of SMC are at the core of most Natural sed in the Language Processing (NLP) applications! also used by Googless)

 Page Rank also (used by web pages)

Stationary Markov-Chain: Example

Domain of variable S_i is {t, q, p, a, h, e}

Probability of initial state $P(S_0)$

Stochastic Transition Matrix $P(S_{t+1}|S_t)$

Which of these two is a possible STM?

 S_{t+1}

t	.6
q	.4
р	0
а	P
h	O
е	

$$S_{t}$$
 + 1

	t q p		р	a h		е
t	0	.3	0	.3	.4	0
q	.4	0	.6	0	0	0
р	0	0	1	0	0	0
а	0	0	.4	.6	0	0
h	0	0	0	0	0	1
е	1	0	0	0	0	0

	,	4	٢	J	-	O
t	1	0	0	0	0	0
q	0	1	0	0	0	0
р	.3	0	1	0	0	0
а	0	0	0	1	0	0
h	0	0	0	0	0	1
	1					

5>1

A.Left one only

C. Both

clicker.

B. Right one only

D. None

Stationary Markov-Chain: Example

Domain of variable S_i is {t, q, p, a, h, e}

We only need to specify...

$$P(S_0)$$

Probability of initial state

t	.6				
q	.4				
р	0				
а	9				
h	0				
е	0				

1.

Slide 22

Stochastic Transition Matrix

$$P(S_{t+1}|S_t)$$

St) St+2)
6 values 6 values

							V	
		t	σ	р	а	h	е	
	t	0	.3	0	.3	.4	0	
7	q	.4	0	.6	0	0	0 6	P(St+1 St=9)
	р	0	0	1	0	0	0	$P(S_{t+1} S_{t}=9)$ $P(S_{t+1} S_{t}=9)$
$S_t \rightarrow$	а	0	0	.4	.6	0	0	
7	h	0	0	0	0	0	1	
	e	1	0	0	0	0	0	

CPSC 322, Lecture 30

Markov-Chain: Inference

Probability of a sequence of states S₀ ... S_T

$$P(S_{0},...,S_{T}) = P(S_{0}) P(S_{1}|S_{0}) P(S_{2}|S_{1})$$

$$P(S_{t+1}|S_{t})$$

$$P(S_{t+1}|S_{t})$$

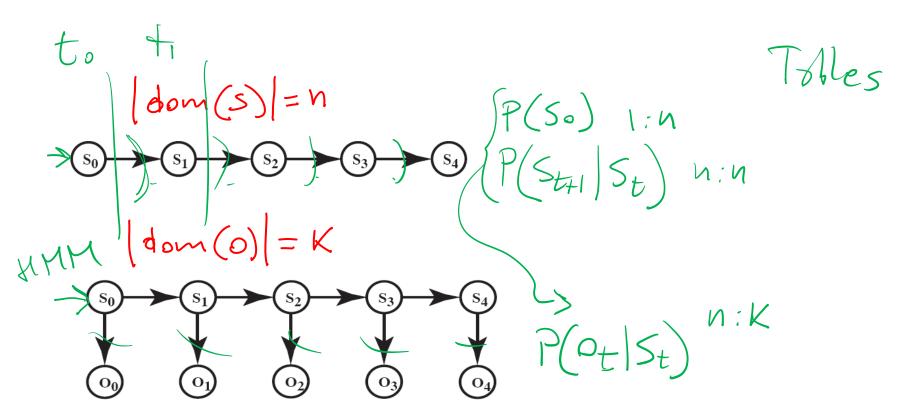
$$P(S_{0}) = P(S_{0}) P(S_{0}) P(S_{t+1}|S_{t})$$

$$P(S_{0}) = P(S_{0}) P(S_{0}) P(S_{0}|S_{0}) P(S_{0}|S_{0}|S_{0}) P(S_{0}|S_{0}|S_{0}|S_{0}) P(S_{0}|S$$

CPSC 322, Lecture 30

Slide 23

Recap: Markov Models



Lecture Overview

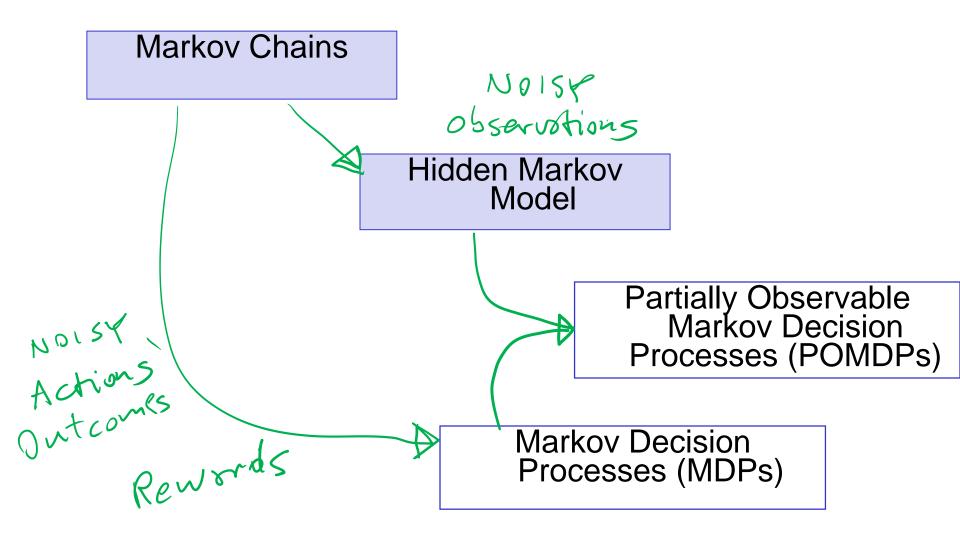
Value of Information and Value of Control

Recap Markov Chain

Markov Decision Processes (MDPs)

Formal Specification and example

Markov Models



Combining ideas for Stochastic planning

What is a key limitation of decision networks?

Represent (and optimize) only a fixed number of decisions

What is an advantage of Markov models?

The network can extend indefinitely

Goal: represent (and optimize) an indefinite sequence of decisions

Decision Processes

Often an agent needs to go beyond a fixed set of decisions – Examples?

Would like to have an ongoing decision process

Infinite horizon problems: process does not stop

Robot surviving on planet, Monitoring Nuc. Plant,

Indefinite horizon problem: the agent does not know when the process may stop

resolving location

Finite horizon: the process must end at a give time N

In N steps

How can we deal with indefinite/infinite **Decision processes?**

We make the same two assumptions we made for....

The action outcome depends only on the current state

Let S_t be the state at time t ... $P(S_{t+1} | S_t, A_t, S_{t-1}, A_{t-1})$

The process is stationary...

The process is stationary...

the same for M t

We also need a more flexible specification for the utility. How?

• Defined based on a reward/punishment *R(s)* that the agent receives in each state s eg. $\leq r_0 r_2 - \cdots r_n$

CPSC 422, Lecture 2

Slide 29

MDP: formal specification

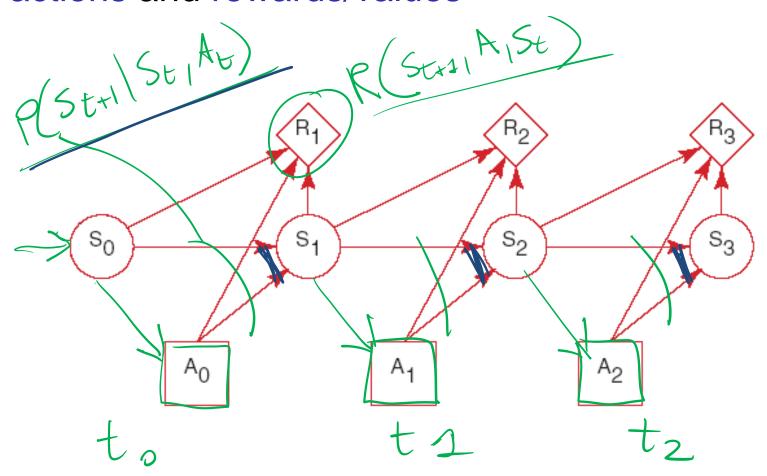
For an MDP you specify:

- set S of states and set A of actions
- the process' dynamics (or *transition model*) $P(S_{t+1}|S_t, A_t)$
- The reward function
 - R(s) is used when the reward depends only on the state **s** and not on how the agent got there
 - More complex R(s, a, s') describing the reward that the agent receives when it performs action a in state s and ends up in state s'

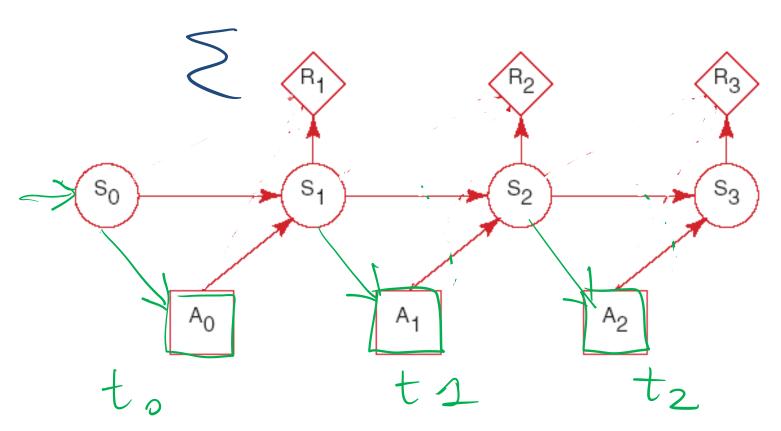
• Absorbing/stopping/terminal state
$$S_{ab}$$
 for M action $P(S_{ab}|a,S_{ab})=1$ $R(S_{ab},a,S_{ab})=0$

MDP graphical specification

Basically a MDP is a Markov Chain augmented with actions and rewards/values

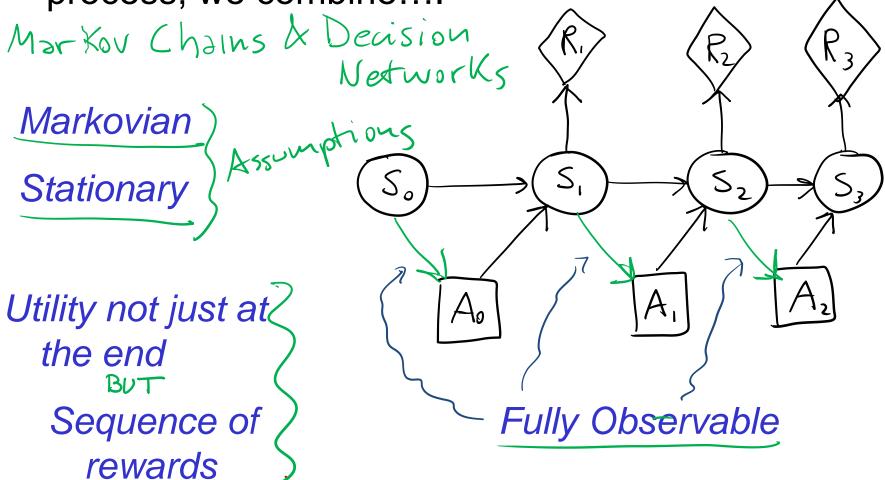


When Rewards only depend on the state

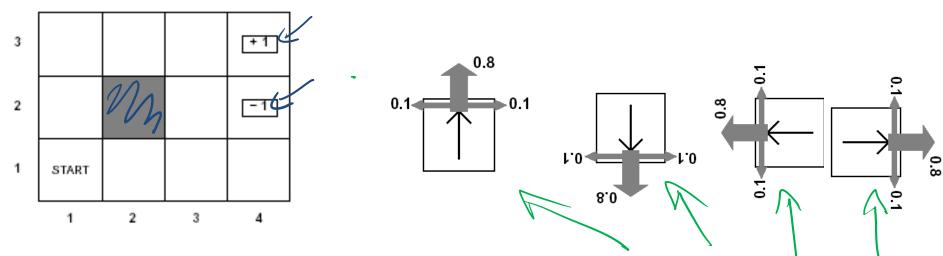


Summary Decision Processes: MDPs

To manage an ongoing (indefinite... infinite) decision process, we combine....



Example MDP: Scenario and Actions



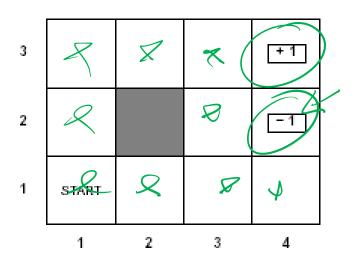
Agent moves in the above grid via actions *Up, Down, Left, Right* Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it stays there

How many states? // // /2

There are two terminal states (3,4) and (2,4)

Example MDP: Rewards



$$R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

Learning Goals for today's class

You can:

- Define and compute Value of Information and Value of Control in a decision network
- Effectively represent indefinite/infinite decision processes with a Markov Decision Process (MDP)
- Compute the probability distribution on states given a sequence of actions in an MDP
- Define a policy for an MDP

TODO for Mon

- Read textbook 9.4
- Read textbook 9.5
 - 9.5.1 Value of a Policy
 - 9.5.2 Value of an Optimal Policy
 - 9.5.3 Value Iteration

CPSC 322 Review "Exam"

https://forms.gle/SpQwrXfonTZrVf4P7

Based on CPSC 322 material

- Logic
- Uncertainty
- Decision Theory

Review material (e.g., 322 slides from 2017):

https://www.cs.ubc.ca/~carenini/TEACHING/CPSC322-17S/index.html