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L ecture Overview

Value of Information and Value of
Control

Recap Markov Chain
Markov Decision Processes (MDPS)
* Formal Specification and example
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Simple Decision Net

« Early in the morning. Shall | take my umbrella today? (I'll
have to go for a long walk at noon)

« Relevant Random Variables?

K?\\//\)/g{\/\ ho\ T .
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+ 00
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Polices for Umbrella Problem

« A policy specifies what an agent should do under each
circumstance (for each decision, consider the parents of
the decision node)

In the Umbrella case:

D, ¢ T F One possible Policy
KZ\MV‘ - R T {: T 1.
le Clouél”] - C T = T
. = %
—
How many 3 )PD\ > poleres
policies? - | DI
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| / | “Weathery )
Value of a3 L <>
\ \

Information

« Early in the morning. | listen to the weather
forecast, shall | take my umbrella today? (I'll have
to go for a long walk at noon)

« What would help the agent make a better Umbrella
decision?

CPSC 422, Lecture 2 Slide 7



Value of /:;Weather“ .
Information F\ Umb&g,ﬂa

 The value of information of a random variable X for
decision D is: Z=U CKuaw""XXB — E /et Kmoweg)

the utility of the network with an arc from X to D 8
minus the utility of the network without the arc.

* Intuitively:
* The value of information is always 2O
* |t is positive only if the agent changes s P “1'47
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Value of Information (cont.)

* The value of information provides a bound on how much

you should be prepared to pay for a sensor. How much is a
perfect weather forecast worth?

—

Weathefr )

i T
~ﬁﬁ,,,‘—s-=~‘“""m‘;”_ "4\&%“%.
( Forecast )

60&_&

Umbrella

V&) :

\v
LT opt
« Original\maximum expected utility: 17__

» Maximum expected utility when we know Weather: 91 p@@@
- Better forecast is worth at most; / q

vy, 0Y 2\ o\éb{gﬂ\oh
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Value of Information

« The value of information provides a bound on how much you should be
prepared to pay for a sensor. How much is a perfect fire sensor worth?

Smoke

* Original maximum expected utility: -22.6
« Maximum expected utility when we know Fire: -2 @ space
* Perfect fire sensor is worth: /7 ©. 4
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Value of e

Control — ) <>

Umbrella

« What would help the agent to make an even better
Umbrella decision? To maximize its utility.

Weather Umbrella Value
Rain true 70
Rain false 0
noRain true 20
_% noRairY false 100
* The value of control of a variable X Is:

the utility of the network when you make X a
decision variable minus the utility of the network
when X Is a random variable.

CPSC 422, Lecture 2 Slide 11



Value of Control

 What if we could control the weather?

— —
y 2 ~
. Weather )
%“"‘%wm,w"" %
N——
e
&

—

4:“"9’.# =] o %kﬁa’\
g Foreca,st )
\ Tbrella

» Original maximum expected utility: 7
» Maximum expected utility when we control the weather: 100
- Value of control of the weather: 73

p@@@
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Value of Control

« What if we control Tampering?

Tampering
=

i

W/

Check
Smoke

- SeeSmoke

i

Report

-0

* Original maximum expected utility:

Call

-22.6

« Maximum expected utility when we control the Tampering:

 Value of control of Tampering: I 9
* Let’'s take a look at the optimal policy

« Conclusion: do not tamper with fire alarms!
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L ecture Overview

Value of Information and Value of Control

Recap Markov Chain
Markov Decision Processes (MDPS)
* Formal Specification and example
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Lecture Overview (from my 322)

 Temporal Probabilistic Models

e Start Markov Models
* Markov Chain

* Markov Chains in Natural Language
Processing
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Simplest Possible DBN

* One random variable for each time slice: let's assume S,
represents the state at time t. with domain v, A

DR

JDQ t/)’ —ZL tB
P 2¢€U - ?lreWJV FredneR
« Each random variable depends only on the previous one

» ThuP(Sp 4 [ S. - ‘<t\ - F(?fji ?__‘7>

 Intuitively S; conveys all of the information about the
history that can affect the future states.

14

‘> The future is independent of the past given the present.”
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Simplest Possible DBN (cont’ )(

« How many CPTs do we need to spec:lfy’? -»cl' "
A EN <) Pls.lsy) eftc. m

A. C 2 D. 3 @
« Stationary process assumption: the anism

that regulates how state variables change
overtime Is stationary, that is it can be described
by a single transition model

¢ P(S{S;,) 1s Hhe ssme s M T

0| S)




Stationary Markov Chain (SMC)

A stationary Markov Chain : for all t >0
* P (Stal So.S) =P (SeulS) and [larkov 23sunphion
* P (S;.lS) is the same s tsowsv

So we only need to specify?

—
@St +11Sy) a@ B. P (Sp)

C.P(S4S) D. P (S;1S41)




Stationary Markov Chain (SMC)

A stationary Markov Chain : for all t >0
* P (Spl SueesS) = P (SpalS) and  [Marav 2350 phion
* P (S;41]Sy is the same s tsowsv

We only need to specify P(%) and TDLS t+1 / §t>
» Simple Model, easy to specify <

. Often the natural model <

* The network can extend indefiniterL/

« Variations of SMC are at the core of most Natural




Stationary Markov-Chain: Example

. . . t 6
Domain of variable S;is {t, q, p, a, h, €} ] 1
e N 3
Probability of initial state P (S,) Z —
Stochastic Transition Matrix P (S;,4|S) h| ©
Which of these two is a possible STM? €
St+1 St+1
tlglplalhl|e tiqg|plalh|e
t|o].3|/0[.3/.4]|0 tf1/0,0)0/0]0
gl4/of6]0l0]0 q/0]1]0/0]0]0
D 010 11010 0 S P 3|0 1110|0 0
Staoo.4.600taOOOlOOéD
hlololololol1 hfO| O 00|01
el1]| 00 0 el0|]0]0(.2/01]1 §>ﬁ
- A.Left one or@ B. Right one only
|»c||cker®|
C . Both D. None



Stationary Markov-Chain: Example

SIYX Possible

Domain of variable S;is {t, g, p, a, h, €} valoes
We only need to specify... t] -6
q 4
P (SO) P 0
Probability of initial state ;‘ Z
. . : e O
Stochastic Transition Matrix S .1 v
tiglplalh|e
P (S141S) t{0/.3/0|.3 .40
—1|q|4/0]|6|/0]0 0<§P(Stﬁ\5t:q
@/ Sf plojOof1]|0]|0]|0O ev(gtﬁlgb:b
>lalo|0|.4]|6|/0]|0]. .-
6 valves \,mes 2/h|o]o]ololo @] - -
el[1|o0|0|0|O]|O|- -
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Markov-Chain: Inference
Probability of a sequence of states S, ... S

P(So,...,S7) = F(SG’) F(Sﬂ F[Sz S)

W

@v> Se ) CQ\) \\ P (Si1IS)

P(SO) :/’g\qpahe
T . A
_ a| 4 | s

Example: o 0 | o o@@ 0]0
AR al 0 al0]|0]. \é\o 0)
P(t,d, p) = h] 0 | [h|o|0]0| O%oNa
- el O el1/o0|0]0] 0O

P(t) « ‘P(q{t) * P(p]q)

0
6 X -3 x 6 = 107
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Recap: Markov Models

€. Tole
[dom@)[:\f\ P(Ss) \:n ’
%@‘ P@ﬂIJSbB h oy
X\\/\V\ kdom(@)[’: K

O>O>0>0—>0 L L
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® ©® ©® O @ ecls:)
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L ecture Overview

Value of Information and Value of Control

Recap Markov Chain
Markov Decision Processes (MDPSs)
* Formal Specification and example
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Markov Models

Markov Chains

N ISy

MQ\ §\< .

Q\/@(co

5

OQSW\/D/{’\'ohj

Hidden Markov
Model

Partially Observable
Markov Decision
Processes (POMDPS)

RewW ™"

—I " Markov Decision
Processes (MDPs)
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Combining ideas for Stochastic
planning
 What is a key limitation of decision networks?

Represent (and optimize) only a fixed number
of decisions

 What is an advantage of Markov models?

The network can extend indefinitely

Goal: represent (and optimize) an
Indefinite sequence of decisions
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Decision Processes

Often an agent needs to go beyond a fixed set of
decisions — Examples?

* Would like to have an ongoing decision process

Infinite horizon problems: process does not stop
ROLOT_SU(\/I\V\'MX/ on f\amct/ M@Wl‘i’or[mﬁ Muc.(P\amt? e

Indefinite horizon problem: the agent does not know

when the process may stop
\re/gdt/\nwg/ lo C_aé“l‘ov\

Finite horizah: the process must end at a give time N
I N !ﬁ‘épj
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How can we deal with indefinite/infinite
Decision processes?

We make the same two assumptions we made for....

The action outcome depends only on the current state A, ¢k

D
Let S, be the state attime £ ... (Stw.L / 55/74{; /Stu,’d%.r >

D
CSf-f—i Kt /At
The process is stationary...

{/l’te Sye %QYXM t

We also need a more flexible specification for the utility. How?
* Defined based on a reward/punishment R(s) that the agent

receives in each state s So S4 - --...5,
\ \ J
ek Z Yo VAo - - ~—- r‘V\
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MDP: formal specification

For an MDP you specify:

e set S of states and set A of actions

* the process’ dynamics (or transition model)
P(S.1lSt A)

* The reward function

* R(s) is used when the reward depends only on the
state s and not on how the agent got there

* More complex R(s, a, s’) describing the reward that
the agent receives when it performs action a in state
s and ends up in state s’

* Absorbing/stopping/terminal stateZSeb
Q[erb/m scham ?(SSB ) S\ ISsL»\ :/_L K@OB/Q/ 5&)1‘:0
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MDP graphical specification

Basically a MDP is a Markov Chain augmented with
actions and rewards/values

Q@t’(\\%b \P‘Q @w
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When Rewards only depend on the
State
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Summary Decision Processes:. MDPs

To manage an ongoing (indefinite... infinite) decision
process, we combine....

Mac¥ou Chsims & Decision
N edtwor s

Markovian o

- P(Ss“""(’\/\o 2

Stationary @

Utility not just atc

the end
BUT

Sequence of
rewards

Fully Observable
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Example MDP: Scenario and Actions

1
3 EANNS

v

- ' S o
L - - 2 Eﬂ
(=]
1 10 1’0 =)
START e

B NK;TTS

Agent moves in the above grid via actions Up, Down, Left, Right
Each action has:

* (0.8 probability to reach its intended effect

* 0.1 probability to move at right angles of the intended direction
* |f the agents bumps into a wall, it stays there

How many states? )! "/ /%, .
There are two terminal states (3,4) and (2,4)
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Example MDP: Rewards

] (e
: | < 2(/(
15:#%-52 N

Ris) — —0.04 (small penalty) for nonterminal statesX
Y 4 for terminal states

CPSC 422, Lecture 2 Slide 35



Learning Goals for today’s class

YOou can:

« Define and compute Value of Information and
Value of Control in a decision network

» Effectively represent indefinite/infinite decision
processes with a Markov Decision Process (MDP)

CPSC 422, Lecture 2 Slide 36



TODO for Mon

e Read textbook 9.4
« Read textbook 9.5
 9.5.1 Value of a Policy

 9.5.2 Value of an Optimal Policy
 9.5.3 Value lteration
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CPSC 322 Review “Exam”

https://forms.gle/SpQwrXfonTZrV{4P7
Based on CPSC 322 material

°* Logic

* Uncertainty

* Decision Theory

Review material (e.g., 322 slides from 2017):
https://www.cs.ubc.ca/~carenini/ TEACHING/CPSC322-17S/index.html
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