
CPSC 422, Lecture 8 Slide 1

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 8

Sep, 20, 2019



CPSC 422, Lecture 8 2

Lecture Overview

Finish Q-learning

• Algorithm Summary

• Example

• Exploration vs. Exploitation
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Example

Reward Model: 
• -1 for doing UpCareful

• Negative reward when hitting  a wall, as marked on the picture

➢ Six possible states <s0,..,s5>

➢4 actions: 

• UpCareful: moves one tile up unless there is 
wall, in which case stays in same tile. Always 
generates a penalty of -1

• Left: moves one tile left  unless there is wall, in 
which case 

✓stays in same tile if  in s0 or s2

✓ Is sent to s0 if in s4

• Right: moves one tile right  unless there is wall, 
in which case stays in same tile

• Up: 0.8 goes up unless there is a wall, 0.1 like 
Left, 0.1 like Right
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Example
➢ The agent knows about the 6 states and 4 

actions

➢ Can perform an action, fully observe its 

state and the reward it gets

➢ Does not know how the states are 

configured, nor what the actions do 

• no transition model, nor reward 
model
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Example (variable αk)
➢ Suppose that in the simple world described earlier, the 

agent has the following sequence of experiences

<s0, right, 0, s1, upCareful, -1, s3,  upCareful, -1, s5, left, 0, s4, left, 10, s0>

➢ And repeats it k times (not a good behavior for a Q-learning 

agent, but good for didactic purposes)

➢ Table shows the first 3 iterations of Q-learning when

• Q[s,a] is initialized to 0 for every a and s

• αk= 1/k, γ= 0.9
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Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 0 0 0 0 0

Left 0 0 0 0 0 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1k=1

Only immediate rewards 
are included in the update

in this first pass
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k=1k=2

1 step backup from 
previous positive 
reward in s4
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Left 0 0 0 0 10 4.5

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1k=3

The effect of 
the positive 
reward in s4 is 
felt two steps 
earlier at the 
3rd iteration
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Example (variable αk)

➢ As the number of iterations increases, the effect of the positive reward 

achieved by moving left in s4 trickles further back in the sequence of steps

➢ Q[s4,left] starts changing only after the effect of the reward has reached s0

(i.e. after iteration 10 in the table)
10
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New evidence is given 
much more weight 
than original estimate

Example (Fixed α=1)
➢ First iteration same as before, let’s look at the second
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upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 9
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Up 0 0 0 0 0 0

k=1k=3

Same here

No change from previous 
iteration, as all the reward 
from the step ahead was 
included  there
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Comparing fixed α and …

Fixed α generates faster update: 

all states see some effect of the 
positive reward from <s4, left> by 
the 5th iteration

Each update is much larger

Gets very close to final numbers by 
iteration 40, while with variable α
still  not there by iteration 107

However:

Q-learning with fixed α is not 
guaranteed to converge

13
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On the approximation… 
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A. There is positive reward in most states

B. Q-learning tries each action an 
unbounded number of times

C. The transition model is not sparse 

➢ For the approximation to work…..



Matrix sparseness

Number of zero elements of a matrix divided by the 

number of elements. For conditional probabilities 

the max sparseness is

Density is = (1 – sparseness) 

The min density for conditional probabilities is 

Note: the action is deterministic!
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Why approximations work… 

➢ Way to get around the missing  transition model and 
reward model

➢ Aren’t we in danger of using data coming from unlikely 
transition to make incorrect adjustments?

➢ No, as long as Q-learning tries each action an unbounded 
number of times

➢ Frequency of updates reflects transition model, P(s’|a,s)
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Lecture Overview

Finish Q-learning

• Algorithm

• Example

• Exploration vs. Exploitation



What Does Q-Learning learn

➢ Does Q-learning gives the agent an optimal policy? 
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Q values
s0 s1 … sk

a0 Q[s0,a0] Q[s1,a0] …. Q[sk,a0]

a1 Q[s0,a1] Q[s1,a1] … Q[sk,a1]

… … … …. …

an Q[s0,an] Q[s1,an] …. Q[sk,an]
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Exploration vs. Exploitation

➢ Q-learning does not explicitly tell the agent what to do 

• just computes a Q-function Q[s,a] that allows the agent to see, for every 
state, which is the action with the highest expected reward

➢ Given a Q-function the agent can :

• Exploit the knowledge accumulated so far, and chose the action 
that maximizes Q[s,a] in a  given state (greedy behavior)

• Explore new actions, hoping to improve its estimate of the optimal 
Q-function, i.e. *do not chose* the action suggested by the current 
Q[s,a]
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Exploration vs. Exploitation

➢ When to explore and when the exploit?

1. Never exploring may lead to being stuck in a suboptimal course of 
actions

2. Exploring too much is a waste of the knowledge accumulated via 
experience
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A. Only (1) is true B. Only (2) is true

C. Both are true D. Both are false



Exploration vs. Exploitation

➢ When to explore and when the exploit?

• Never exploring may lead to being stuck in a suboptimal course of 
actions

• Exploring too much is a waste of the knowledge accumulated via 
experience

➢ Must find the right compromise
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Exploration Strategies

➢ Hard to come up with an optimal exploration policy (problem 

is widely studied in statistical decision theory)

➢ But intuitively, any such strategy should be greedy in the 

limit of infinite exploration (GLIE), i.e. 

• Choose the predicted best action in the limit

• Try each action an unbounded number of times

• We will look at two exploration strategies

• ε-greedy

• soft-max
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ε-greedy

➢ Choose a random action with probability  ε and choose 

best action with probability 1- ε

➢ First  GLIE condition (try every action an unbounded 

number of times)  is  satisfied via the ε random selection

➢ What about second condition?

• Select predicted best action in the limit.

➢ reduce ε overtime!
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Soft-Max

➢ Takes into account improvement in estimates of expected 

reward function Q[s,a]

• Choose action a in state s with a probability proportional to current 
estimate of Q[s,a]
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➢ τ (tau) in the formula above influences how randomly actions 

should be chosen

• if τ is high, the exponentials approach 1, the fraction approaches 
1/(number of actions), and each action has approximately the same 
probability of being chosen ( exploration or exploitation?)

• as τ → 0, the exponential with the highest Q[s,a] dominates, and the 
current best action is always chosen (exploration or exploitation?)
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Soft-Max example
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Learning Goals for today’s class

➢You can:

• Explain, trace and implement Q-learning

• Describe and compare techniques to combine exploration 

with exploitation
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TODO for Mon

• Carefully read : A Markov decision process 
approach to multi-category patient scheduling in 
a diagnostic facility, Artificial Intelligence in 
Medicine Journal, 2011

• Follow instructions on course WebPage

<Readings>

• Keep working on assignment-1 (due next Fri)


