Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 19

Oct, 18, 2019

4

Slide Sources
Raymond J. Mooney University of Texas at Austin

D. Koller, Stanford CS - Probabilistic Graphical Models

D. Page, Whitehead Institute, MIT

Several Figures from

"Probabilistic Graphical Models: Principles and Techniques" *D. Koller, N. Friedman* 2009 CPSC 422, Lecture 19

Lecture Overview

- Recap: Naïve Markov Logistic regression (simple CRF)
- CRFs: high-level definition
- CRFs Applied to sequence labeling
- NLP Examples: Name Entity Recognition, joint POS tagging and NP segmentation
- CFR + deep learning Example

Let's derive the probabilities we need

$$\begin{array}{c} \phi_i(X_i,Y_1) = \exp\{w_i\} \{X_i = 1,Y_1 = 1\}\} \\ \text{how strongly } Y_2 = 1 \text{ given that } X_i = 1 \\ \phi_0(Y_1) = \exp\{w_0\} \{Y_1 = 1\}\} \end{array}$$

$$P(Y_1 \mid X_1, \dots, X_n) =$$

$$\overset{\approx}{P}(Y_1 = 0, x_1, \dots, x_n) = 1$$

$$\tilde{P}(Y_1 = 1, x_1, ..., x_n) =$$

Continue.....

$$P(Y_{1}=1|X_{1}...X_{n}) = \frac{e^{w_{0}+2w_{1}X_{1}}}{1 + e^{w_{0}+2w_{1}X_{2}}}$$

$$= \frac{e^{z}}{1 + e^{z}} = \frac{1}{e^{-z}}$$

$$= \frac{1}{e^{-z}+1}$$

$$P(Y_{1}|X_{1}...X_{n}) = \left\{\frac{1}{e^{-z}+1} \mid \frac{e^{-z}+1}{e^{-z}+1}\right\}$$

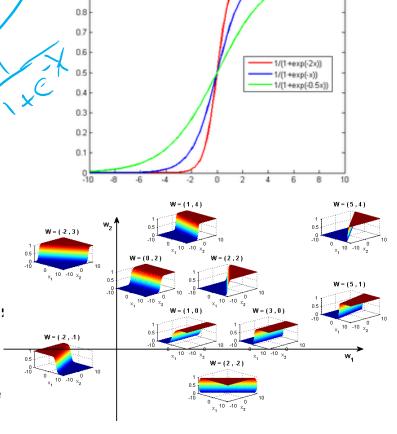
Sigmoid Function used in Logistic Regression

Great practical interest

 Number of param w_i is linear instead of exponential in the number of parents

 Natural model for many realworld applications

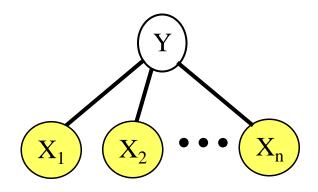
 Naturally aggregates the influence of different "parents"



CPSC 422, Lecture

Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF) aka naïve markov model

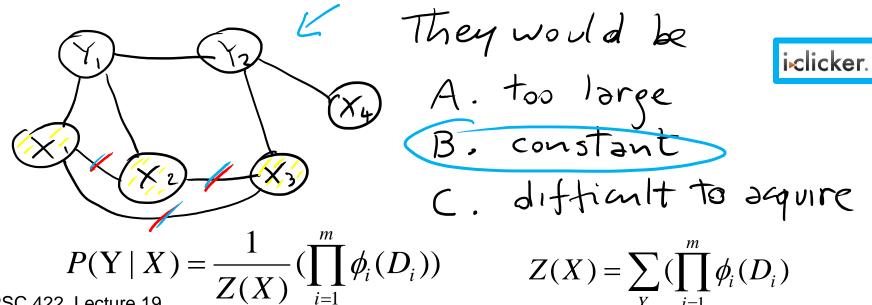


But only models the conditional distribution,
 P(Y | X) and not the full joint P(X, Y)

Let's generalize

Assume that you always observe a set of variables $\mathbf{X} = \{X_1 ... X_n\}$ and you want to predict one or more variables $Y = \{Y_1...Y_k\}$

- A CRF is an undirected graphical model whose nodes corresponds to X ∪ Y.
- $\phi_1(D_1)...\phi_m(D_m)$ represent the factors which annotate the network (but we disallow factors involving only vars in X – why?)

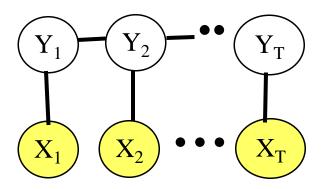


CPSC 422, Lecture 19

Lecture Overview

- Recap: Naïve Markov Logistic regression (simple CRF)
- CRFs: high-level definition
- CRFs Applied to sequence labeling
- NLP Examples: Name Entity Recognition, joint POS tagging and NP segmentation
- CFR + deep learning Example

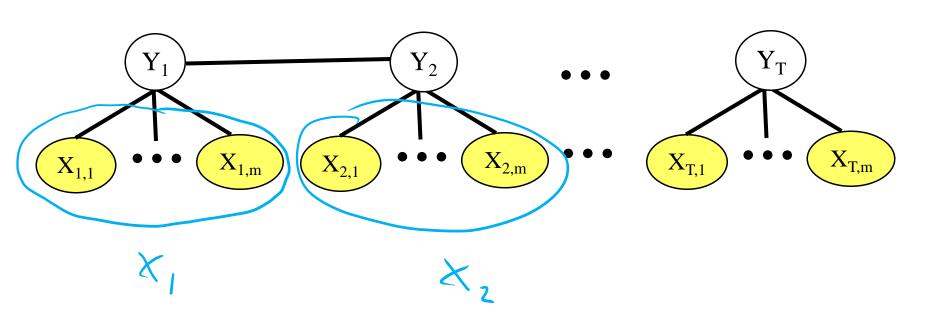
Sequence Labeling



Linear-chain CRF

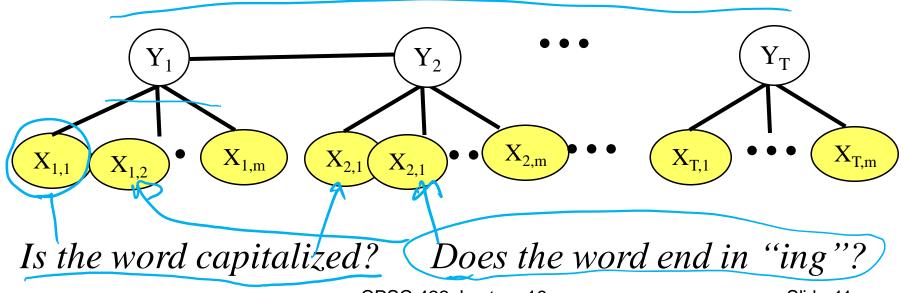
Increase representational Complexity: Adding Features to a CRF

• Instead of a single observed variable X_i we can model multiple features X_{ii} of that observation.



CRFs in Natural Language Processing

- One target variable Y for each word X, encoding the possible labels for X
- Each target variable is connected to a set of feature variables that capture properties relevant to the target distinction



Named Entity Recognition Task

- Entity often span multiple words "British Columbia"
- Type of an entity may not be apparent for individual words "University of British Columbia"
- Let's assume three categories: Person, Location, Organization
- BIO notation (for sequence labeling)

Linear chain CRF parameters

With two factors "types" for each word

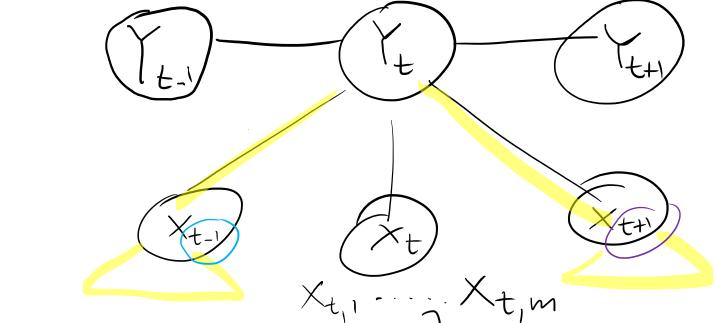
$$\phi_t^1(Y_t,Y_{t-1})$$
 $\phi_t^1(Y_t,Y_{t+1})$ Dependency between neighboring target vars

$$\phi_t^2(Y_t, X_1, ..., X_T)$$

Dependency between target variable and its context in the word sequence, which can include also **features of the words** (capitalized, appear in an atlas of location names, etc.)

Factors are similar to the ones for the Naïve Markov (logistic regression)

$$\phi_t(Y_t,X_{tk}) = \exp\{w_{tk} \times 1 \{Y_t = \text{I-LOC}, X_{tk} = 1 \}\}$$
 opposition names



$$1 \left\{ Y_{t} = 1 - 0R6, X_{t, \kappa} = T_{imes}^{i} \right\}$$

Features can also be

- The word
- Following word
- Previous word

More on features

Including features that are conjunctions of simple features increases accuracy

1 { Yt=1-PER, Xt+1, K="spoke"} 11 { Yt=1-PER, Xt-1, K="Mrs."}

Total number of features can be 10⁵-10⁶

However features are sparse i.e. most features are 0 for most words

Linear-Chain Performance

Per-token/word accuracy in the high 90% range for many natural datasets

/abe/ is wrong for 2 words at of 9

Per-field precision and recall are more often around 80-95%,

Per-field precision and recall are more often around 80-95%, depending on the dataset. Entire Named Entity Phrase must be correct

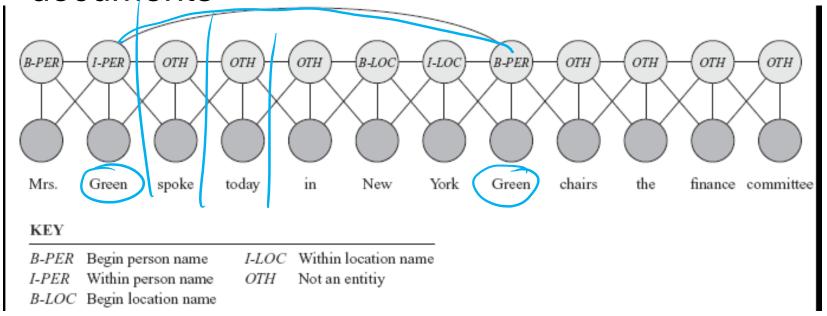
only one is correct out of 2

O B-ORG 1-ORG B-LOC I-LOC
The University of British Columbia iclicker is in Vancouver B. Per-word accuracy Per-field precision! CPSC 422, Lecture 19 Slide 16

Skip-Chain CRFs

Include additional factors that connect non-adjacent target variables

E.g., When a word occur multiple times in the same documents



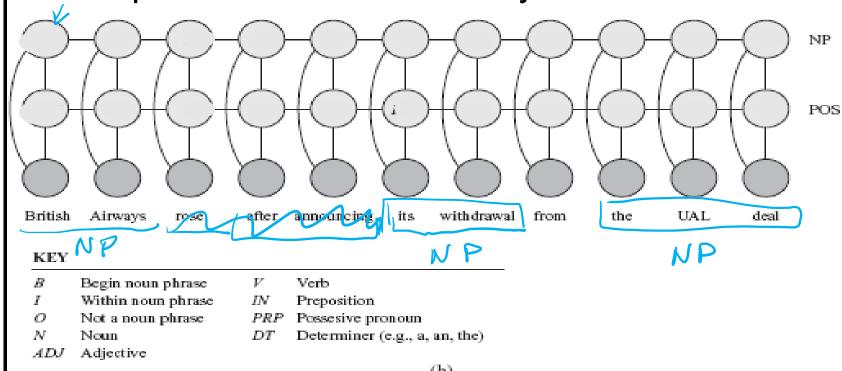
Graphical structure over Y can depend on the values of the Xs ! CPSC 422, Lecture 19 Slide 17

Lecture Overview

- Recap: Naïve Markov Logistic regression (simple CRF)
- CRFs: high-level definition
- CRFs Applied to sequence labeling
- NLP Examples: Name Entity Recognition, joint POS tagging and NP segmentation
- CFR + deep learning Example

Coupled linear-chain CRFs

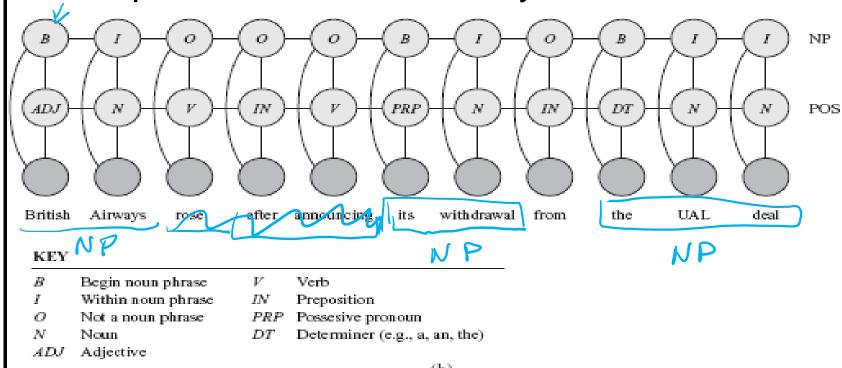
Linear-chain CRFs can be combined to perform multiple tasks simultaneously



 Performs part-of-speech labeling and nounphrase segmentation

Coupled linear-chain CRFs

Linear-chain CRFs can be combined to perform multiple tasks simultaneously



 Performs part-of-speech labeling and nounphrase segmentation

Inference in CRFs (just intuition)

An HMM can be viewed as a factor graph
$$p(\mathbf{y}, \mathbf{x}) = \prod_{t} \Psi_t(y_t, y_{t-1}, x_t)$$
 where $Z = 1$, and the factors are defined as: $\Psi_t(j, i, x) \stackrel{\text{def}}{=} p(y_t = j | y_{t-1} = i) p(x_t = x | y_t = j)$. (4.1)

Forward / Backward / Smoothing and Viterbi can be rewritten (not trivial!) using these factors

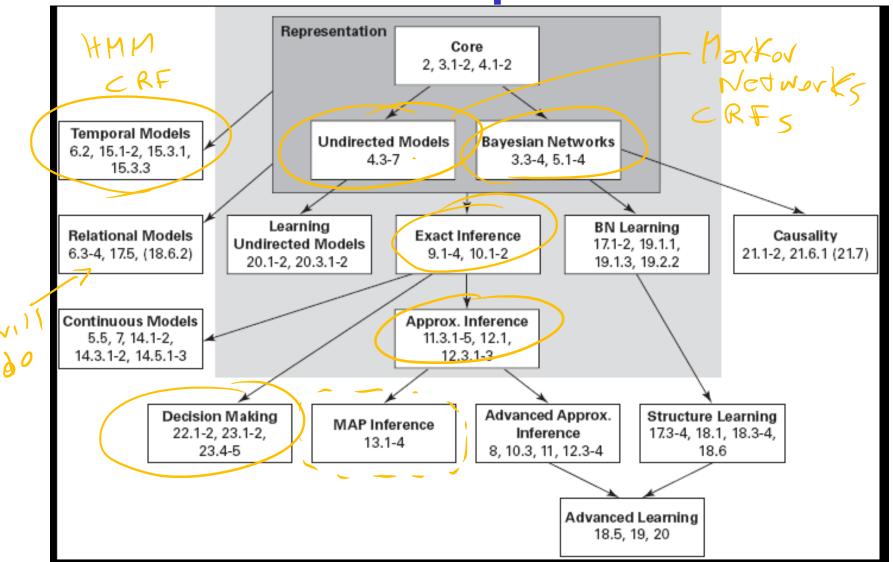
Then you plug in the factors of the CRFs and all the algorithms work fine with CRFs! ©

CRFs Summary

- Ability to incorporate arbitrary overlapping local and global features
- Graphical structure over Y can depend on the values of the Xs (see slide 17)
- Can perform multiple tasks simultaneously (see slide 19)
- Standard Inference algorithm for HMM can be applied
- Practical Learning algorithms exist
- State-of—the-art on many labeling tasks (deep learning recently shown to be often better when large training data are available... current research on ensembling them!)

See MALLET package for CRF implementation

Probabilistic Graphical Models



From "Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

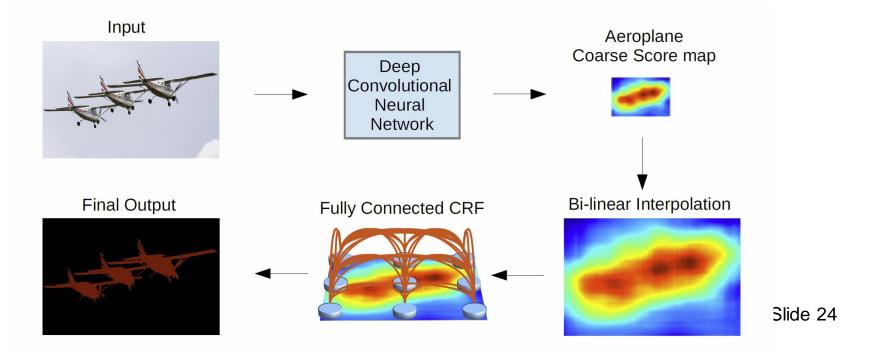
Combining CRFs and Neural Models

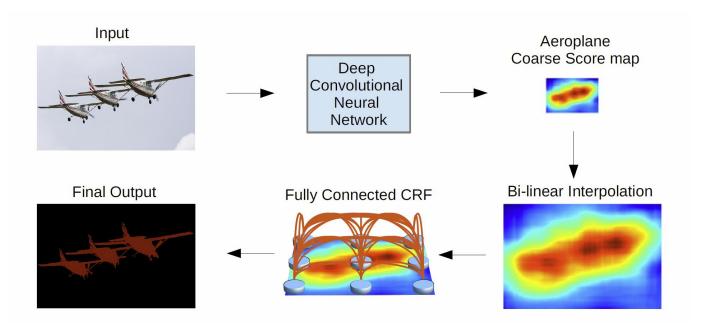
SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NETS AND FULLY CONNECTED CRFS

International Conference on Learning Representations (ICLR), San Diego, California, USA, May 2015.

Liang-Chieh Chen Univ. of California, Los Angeles; George Papandreou Google Inc.; Iasonas Kokkinos INRIA; Kevin Murphy Google Inc.; Alan L. Yuille Univ. of California, Los Angeles

- 1.Use CNN to generate a rough prediction of segmentation (smooth, blurry heat map)
- 2. Refine this prediction with a conditional random field (CRF)





422 big picture

Logics

Hybrid: Det +Sto

Prob CFG

Prob Relational Models

Markov Logics

StarAl (statistical relational Al)

Deterministic Sto

First Order Logics

Stochastic

Query

Planning

- Full Resolution
- SAT

Ontologies

Belief Nets

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models

Markov Networks

Conditional Pandom Fields

Conditional Random Fields

Markov Decision Processes and

Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of Al

Representation

Reasoning Technique

Learning Goals for today's class

You can:

- Provide general definition for CRF
- Apply CRFs to sequence labeling
- Describe and justify features for CRFs applied to Natural Language processing tasks
- Explain benefits of CRFs

Midterm, Fri, Oct 25, we will start at 4pm sharp

How to prepare...

- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture – complete list has been posted)
- Revise all the clicker questions and practice exercises
- More practice material has been posted
- Check questions and answers on Piazza

Next class Mon

- Start Logics
- Revise Logics from 322!