# Intelligent Systems (Al-2)

## Computer Science cpsc422, Lecture 18

Oct, 16, 2019

Slide Sources
Raymond J. Mooney University of Texas at Austin

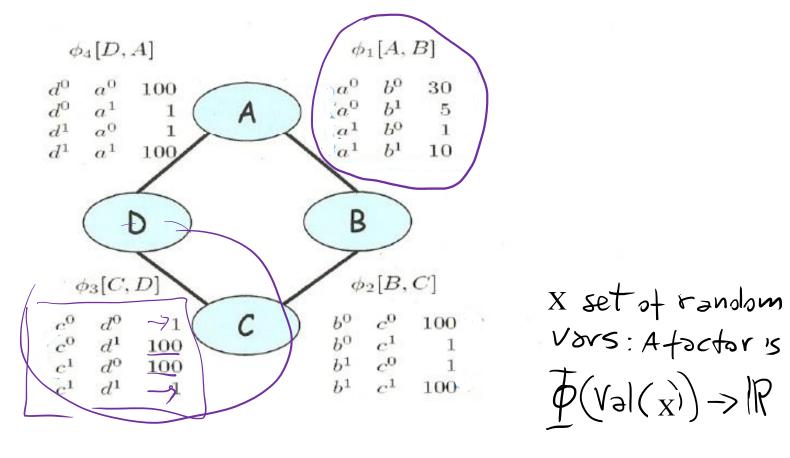
D. Koller, Stanford CS - Probabilistic Graphical Models

## **Lecture Overview**

## **Probabilistic Graphical models**

- Recap Markov Networks
- Recap one application
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

## **Parameterization of Markov Networks**



Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

## How do we combine local models?

#### As in BNets by multiplying them!

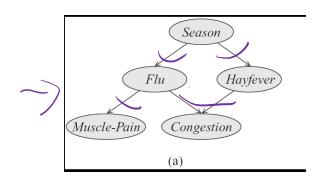
$$\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$$

$$P(A, B, C, D) = \frac{1}{Z} \tilde{P}(A, B, C, D)$$

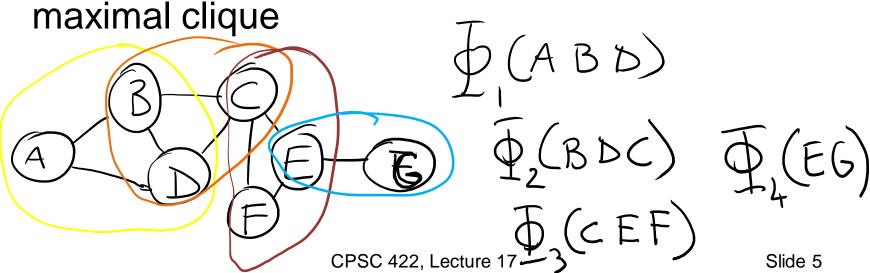
|   | A     | ssig  | $nm\epsilon$   | nt    | Unnormalized | Normalized |                                     |                                                       |
|---|-------|-------|----------------|-------|--------------|------------|-------------------------------------|-------------------------------------------------------|
|   | $a^0$ | $b^0$ | $c^0$          | $d^0$ | 300000       | .04        | 15.43                               | ( ( D)                                                |
|   | $a^0$ | $b^0$ | $c^0$          | $d^1$ | 300000       | .04        | $\phi_4[D,A]$                       | $\phi_1[A,B]$                                         |
|   | $a^0$ | $b^0$ | $c^1$          | $d^0$ | 300000       | .04        | $d^0 = a^0 = 100$                   | $a^0 b^0 30$                                          |
|   | $a^0$ | $b^0$ | $c^1$          | $d^1$ | 30           | 4.1×10-6   | $d^0$ $a^1$ 1 ( $\boldsymbol{A}$    | $a^0 b^1 5$                                           |
| _ | $a^0$ | $b^1$ | $c^0$          | $d^0$ | 500          |            | $d^1  a^0  1$                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|   | $a^0$ | $b^1$ | $c^0$          | $d^1$ | 500          | :          | $d^1 = a^1 = 100$                   | la 8 10                                               |
|   | $a^0$ | $b^1$ | $c^1$          | $d^0$ | 5000000      | . 69       |                                     |                                                       |
| 4 | $a^0$ | $b^1$ | $c^1$          | $d^1$ | 500          |            | ( D )                               | ( B )                                                 |
|   | $a^1$ | $b^0$ | c <sup>0</sup> | $d^0$ | 100          | ,          |                                     |                                                       |
|   | $a^1$ | $b^0$ | $c^0$          | $d^1$ | 1000000      | ·          | $\phi_3[C,D]$                       | $\phi_2[B,C]$                                         |
|   | $a^1$ | $b^0$ | $c^1$          | $d^0$ | 100          | •          |                                     | ~                                                     |
|   | $a^1$ | $b^0$ | $c^1$          | $d^1$ | 100          | •          | $c^{0} d^{0} = 1$ ( <b>C</b>        | $b^0 c^0 100$                                         |
|   | $a^1$ | $b^1$ | $c^0$          | $d^0$ | 10           | •          | $c^0$ $d^1$ $100$ $c^1$ $d^0$ $100$ | $b^0 c^1 1  b^1 c^0 1$                                |
|   | $a^1$ | $b^1$ | $c^0$          | $d^1$ | 100000       |            | $c^1$ $d^1$ 1                       | $b^1$ $c^1$ 100                                       |
|   | $a^1$ | $b^1$ | $c^1$          | $d^0$ | 100000       | •          |                                     |                                                       |
|   | 01    | b1    | c.1            | $d^1$ | 100000       | <u> </u>   |                                     |                                                       |

# Step Back.... From structure to factors/potentials

In a Bnet the joint is factorized....



In a Markov Network you have one factor for each maximal clique



## **General definitions**

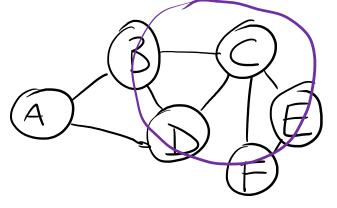
Two nodes in a Markov network are independent if and only if every path between them is cut off

by evidence

eg for A C

So the markov blanket of a node is...?

eg for C



## **Lecture Overview**

## **Probabilistic Graphical models**

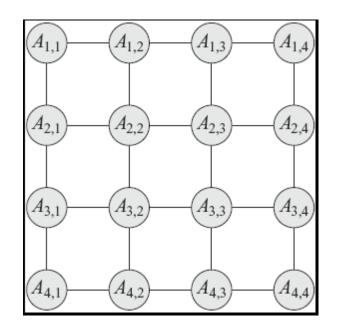
- Recap Markov Networks
- Applications of Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

## Markov Networks Applications (1): Computer Vision

#### Called Markov Random Fields

- Stereo Reconstruction
- Image Segmentation
- Object recognition

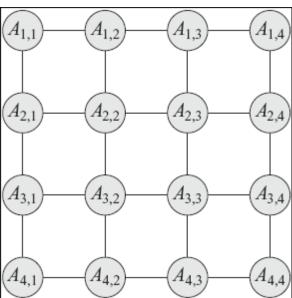
### Typically **pairwise MRF**



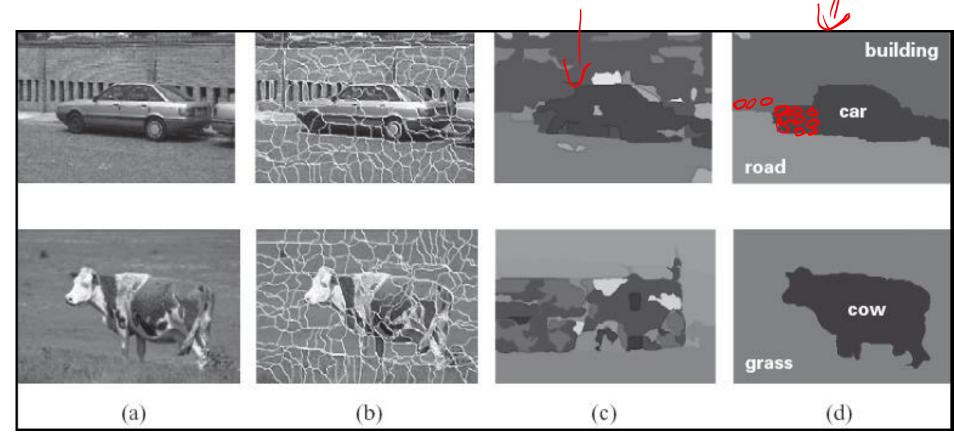
- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
  - E.g., in segmentation: from generically penalize discontinuities, to road under car

# **Image segmentation**





**Image segmentation** 



See related slides in Previous lecture

classifying each superpixel in dependently

With a Markov Random Field 1

## **Lecture Overview**

## **Probabilistic Graphical models**

- Recap Markov Networks
- Applications of Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

## Variable elimination algorithm for Bnets

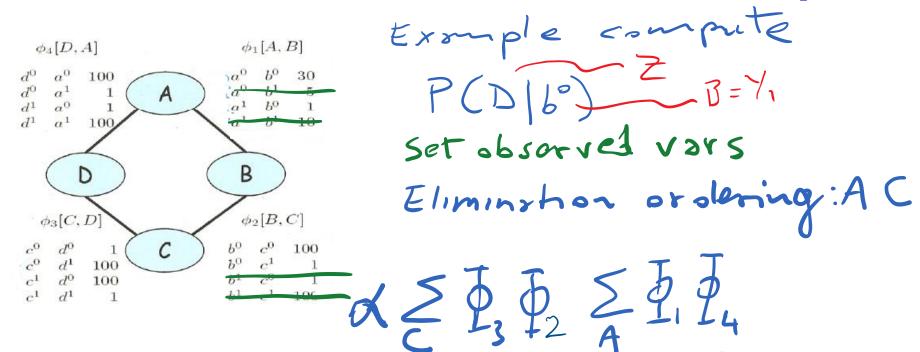
Given a network for  $P(Z, Y_1, ..., Y_j Z_1, ..., Z_i)$ ,:

## To compute $P(Z|Y_1=v_1,...,Y_j=v_j)$ :

- 1. Construct a factor for each conditional probability.
- 2. Set the observed variables to their observed values.
- Given an elimination ordering, simplify/decompose sum of products
- 4. Perform products and sum out  $Z_i$
- 5. Multiply the remaining factors Z
- 6. Normalize: divide the resulting factor f(Z) by  $\sum_{Z} f(Z)$ .

Variable elimination algorithm for Markov Networks.....

# Variable Elimination on MN: Example



Now it is just a matter of multiplying factors and comming out vars
Normalize at the end!

# Gibbs sampling for Markov Networks

i⊧clicker.

Example:  $P(D \mid C=0)$ 

Note: never change evidence!

Resample non-evidence variables in a pre-defined order or a random order

Suppose we begin with A

What do we need to sample?

**A. P(A |** B=0)

**C. P(** B=0, C=0 | **A)** 

|                                                   | A |
|---------------------------------------------------|---|
| B                                                 | C |
| $\left(\begin{array}{c} \\ \\ \end{array}\right)$ | E |
|                                                   | F |

CPSC 422, Lecture 17

Initial assigmnet

## Gibbs sampling MN: what to sample

For Bnets  $P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$ 

For Markov Networks just the product of the factors (normalized)

B=<del>†</del>

B=0

A=1

4.3

A=0

O

0.2

Resample probability B=0; C=0

distribution of P(A|BC)

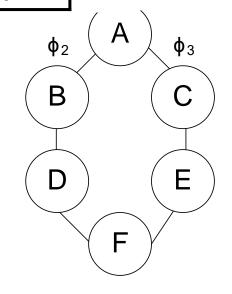
| Α | В | С | D | Е | F |
|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 1 | 0 |
| ? | 0 | 0 | 1 | 1 | 0 |

| F |  |
|---|--|
| 0 |  |
|   |  |

| ф у ф                    | A=1  | A=0 |
|--------------------------|------|-----|
| $\Phi_2 \times \Phi_3 =$ | 12.9 | 8.0 |

| A=1  | A=0  |
|------|------|
| 0.95 | 0.05 |

|      | A=1 | A=0 |
|------|-----|-----|
| C=1_ | 1   | 2   |
| C=0  | 3   | 4   |



## **Example: Gibbs sampling**

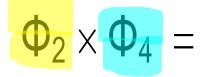
Resample probability distribution of B given A D

|     | A=1 | A  | =0 |  |
|-----|-----|----|----|--|
| B=1 | 1   | 5  |    |  |
| B=0 | 4.3 | 0. | 2  |  |

 $\phi_2$ 

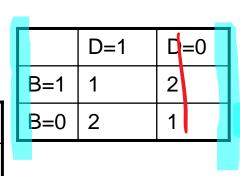
В

| Α | В | С | D | Е | F |
|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | ? | 0 | 1 | 1 | 0 |



| B=1 | B=0 |
|-----|-----|
| 1   | ??  |

| B=1  | B=0  |
|------|------|
| 0.11 | 0.89 |







C. 8.6



F

Ε

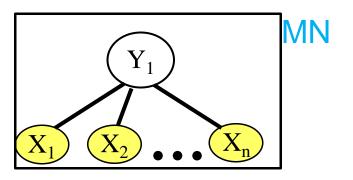
## **Lecture Overview**

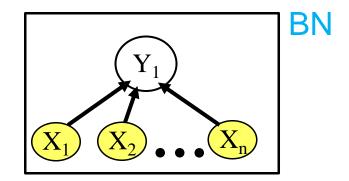
## **Probabilistic Graphical models**

- Recap Markov Networks
- Applications of Markov Networks
- Inference in Markov Networks (Exact and Approx.)
- Conditional Random Fields

## We want to model $P(Y_1|X_1...X_n)$

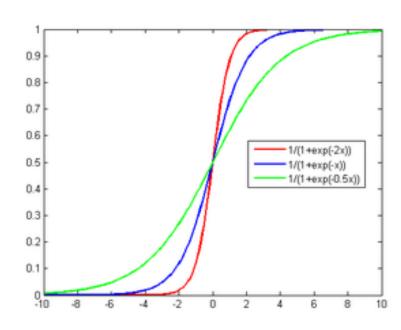
... where all the X<sub>i</sub> are always observed





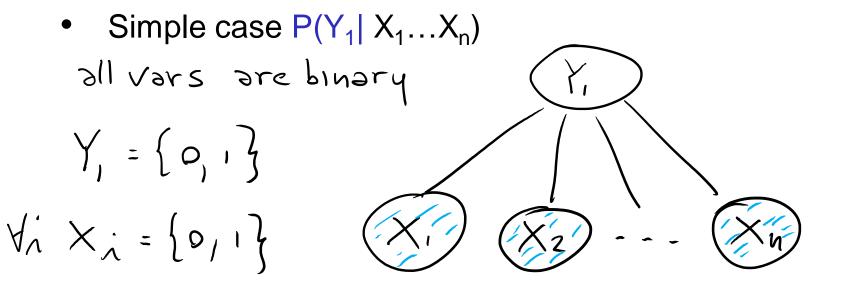
Which model is simpler, MN or BN?

 Naturally aggregates the influence of different parents



## **Conditional Random Fields (CRFs)**

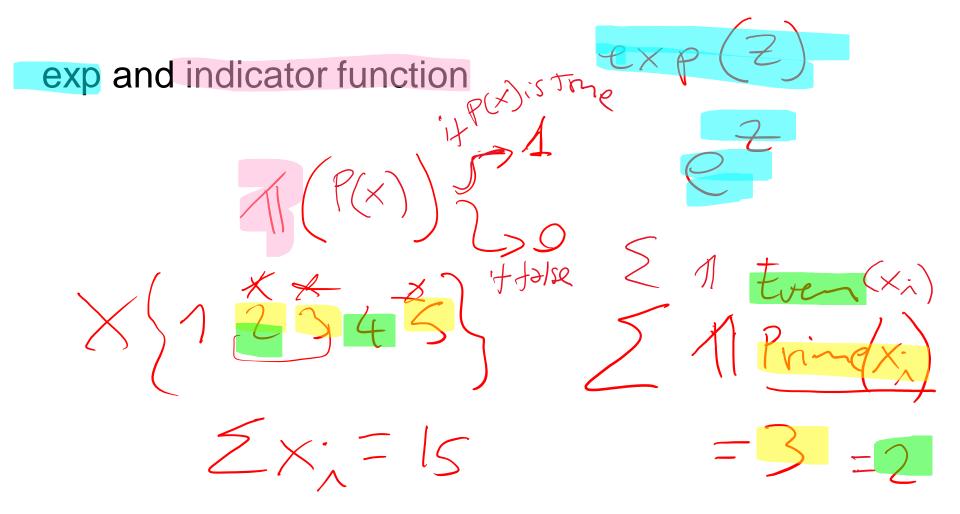
- Model P(Y<sub>1</sub> .. Y<sub>k</sub> | X<sub>1</sub>.. X<sub>n</sub>)
- Special case of Markov Networks where all the X<sub>i</sub> are always observed



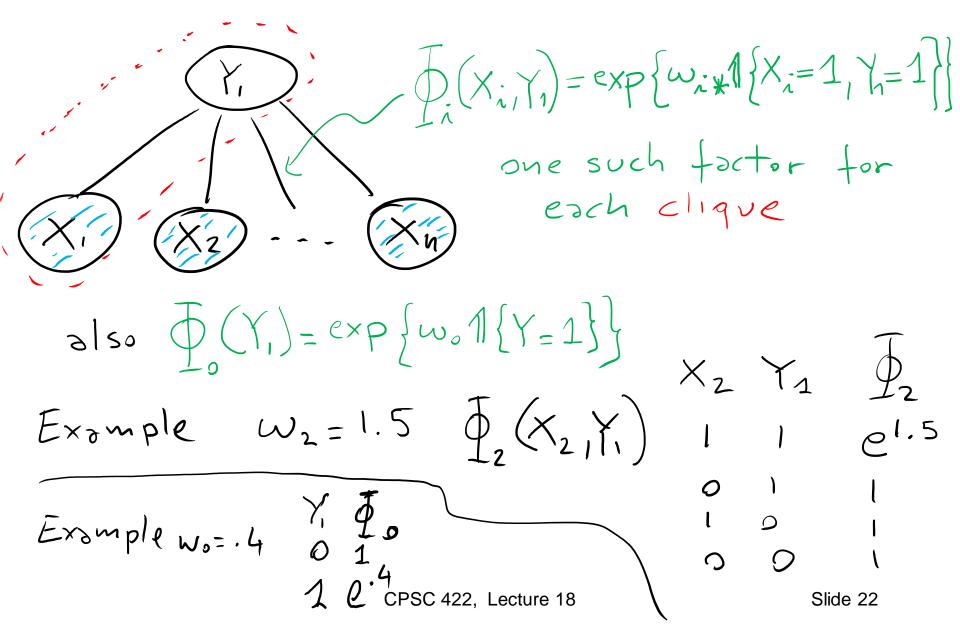
CPSC 422, Lecture 18

Slide 20

## Some notation



## What are the Parameters?



$$\phi_{i}(X_{i},Y_{1}) = \exp\{w_{i} * | \{X_{i} = 1,Y_{1} = 1\}\}\}$$

$$\phi_{0}(Y_{1}) = \exp\{w_{0} * | \{Y_{1} = 1\}\}\}$$

$$\tilde{P}\left(Y_{1} = 1, X_{1}, X_{2}, \dots, X_{N}\right) = \tilde{P}\left(Y_{1}\right) * \tilde{P}\left(X_{1}, X_{2}\right)$$

$$\tilde{P}\left(X_{1} = 1, X_{1}, X_{2}, \dots, X_{N}\right) = \tilde{P}\left(X_{1}\right) * \tilde{P}\left(X_{1}, X_{2}\right)$$

$$\tilde{P}\left(X_{1} = 1, X_{1}, X_{2}, \dots, X_{N}\right) = \tilde{P}\left(X_{1}\right) * \tilde{P}$$

CPSC 422, Lecture 18

Slide 23

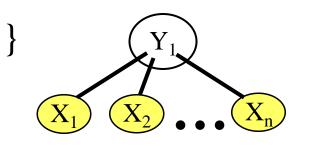
$$\phi_{i}(X_{i}, Y_{1}) = \exp\{w_{i} \mid \{X_{i} = 1, Y_{1} = 1\}\}$$

$$\phi_{0}(Y_{1}) = \exp\{w_{0} \mid \{Y_{1} = 1\}\}\}$$

$$(Y_{1} = 1, X_{1}, X_{2}, \dots, X_{n}) = (Y_{1}) \mid (Y_{1} = 1) \mid (Y_{1}$$

$$\phi_i(X_i, Y_1) = \exp\{w_i \mid \{X_i = 1, Y_1 = 1\}\}\$$

$$\phi_0(Y_1) = \exp\{w_0 \mid \{Y_1 = 1\}\}\$$



$$\tilde{P}(Y_1 = 0, X_1, X_2, \dots, X_N) = \overline{P_o(Y_1)} + \overline{\prod_{i=1}^N} \overline{P_i(X_i, Y_i)}$$

$$P(Y_1 = 1, x_1, ..., x_n) = \exp(w_0 + \sum_{i=1}^n w_i x_i)$$

$$P(Y_1 = 0, x_1, ..., x_n) = 1$$

$$P(Y_1 = 1 | x_1, ..., x_n) = \frac{P(Y_1 = 1 | x_1, ..., x_n)}{P(X_1, ..., x_n)}$$

$$= \frac{e \times P(w_0 + \geq w_i \times i)}{1 + e \times P(w_0 + \geq w_i \times i)}$$

$$P(X_1 = 1 | x_1, ..., x_n) = \frac{P(Y_1 = 1 | x_1, ..., x_n)}{P(X_1, ..., x_n)}$$

$$= \frac{e \times P(w_0 + \geq w_i \times i)}{1 + e \times P(w_0 + \geq w_i \times i)}$$

CPSC 422, Lecture 18

Slide 26

$$P(Y_1 = 1, x_1, ..., x_n) = \exp(w_0 + \sum_{i=1}^n w_i x_i)$$

$$P(Y_1 = 0, x_1, ..., x_n) = 1$$

$$X_1 \quad X_2 \quad X_n$$

$$P(Y_1 = 1 \mid x_1, ..., x_n) = \frac{\widehat{P}(Y_1, x_1, ..., x_n)}{\widehat{P}(x_1, ..., x_n)}$$

$$= \underbrace{\widehat{P}(X_1, ..., x_n)}_{\text{SUM}}$$

$$e^{-z}$$
 $e^{-z}$ 
 $e^{-z}$ 
 $e^{-z}$ 
 $e^{-z}$ 

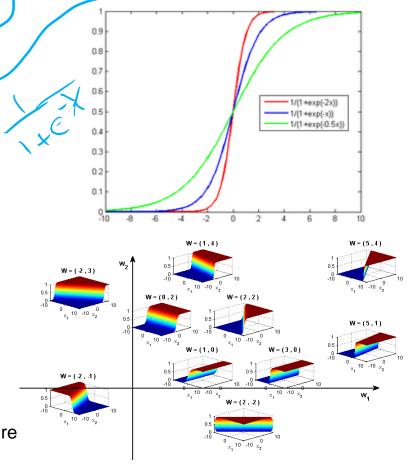
Sigmoid Function used in Logistic Regression

Great practical interest

 Number of param w<sub>i</sub> is linear instead of exponential in the number of parents

 Natural model for many realworld applications

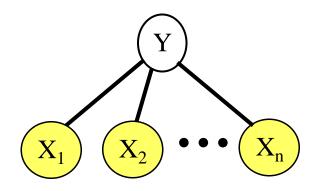
 Naturally aggregates the influence of different parents



CPSC 422, Lecture

# Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF) aka naïve markov model



But only models the conditional distribution,
 P(Y|X) and not the full joint P(X,Y)

## Learning Goals for today's class

#### You can:

- Perform Exact and Approx. Inference in Markov Networks
- Describe a few applications of Markov Networks
- Describe a natural parameterization for a Naïve Markov model (which is a simple CRF)
- Derive how P(Y|X) can be computed for a Naïve Markov model
- Explain the discriminative vs. generative distinction and its implications

### Next class Fri Linear-chain CRFs

To Do Revise generative temporal models (HMM)

Midterm, Fri, Oct 25, we will start at 4pm sharp

## How to prepare....

- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture – complete list has been posted)
- Revise all the clicker questions and practice exercises
- More practice material will be posted
- Check questions and answers on Piazza