Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 17

Oct, 11, 2019

Slide Sources *D. Koller,* Stanford CS - Probabilistic Graphical Models *D. Page*, Whitehead Institute, MIT

Several Figures from "Probabilistic Graphical Models: Principles and Techniques" *D. Koller, N. Friedman* 2009

422 big picture: Where are we Al

Hybrigh Set Sto Prob Relational Models

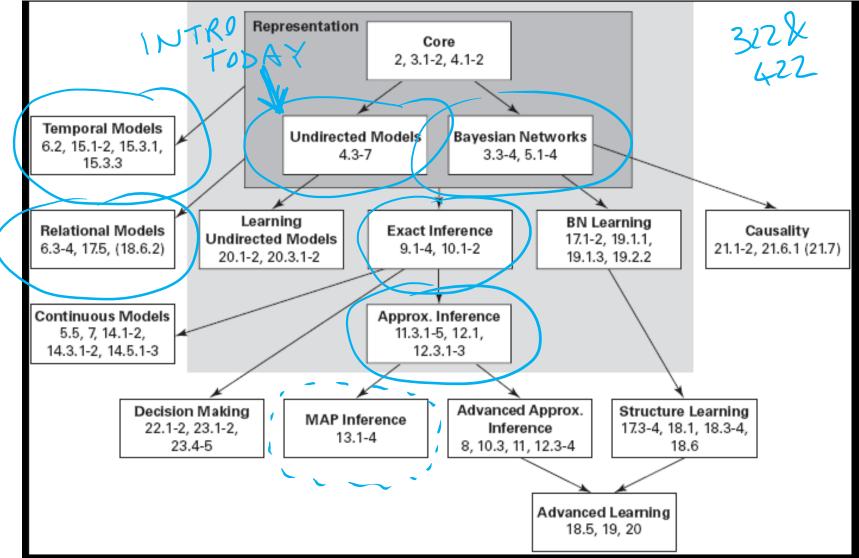
	Deterministic	Stochastic	Markov Lo	gics
	Logics	Belief Nets Approx. : Gibbs		
	First Order Logics	Markov Chains and	HMMs	
Query	Ontologies Temporal rep.	Forward, Viterbi Approx. : Particle		
-	Full Resolution SAT	Undirected Graphical Models Markov Networks	1	
Planning		Markov Decision Processes and Partially Observable MDP		
		Value Iteration Approx. Inference	ence	
Г		Reinforcement Lea	rning	Representation
	Applicatio	ons of Al		Reasoning Technique

Lecture Overview

Probabilistic Graphical models

- Intro
- Example
- Markov Networks Representation (vs. Belief Networks)
- Inference in Markov Networks (Exact and Approx.)
- Applications of Markov Networks

Probabilistic Graphical Models

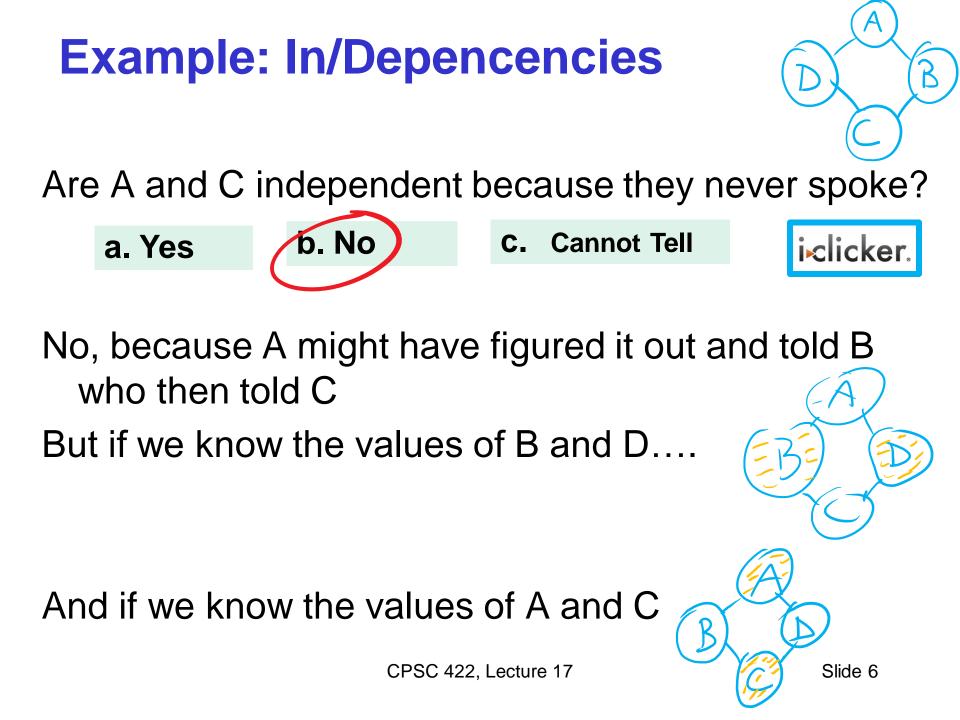


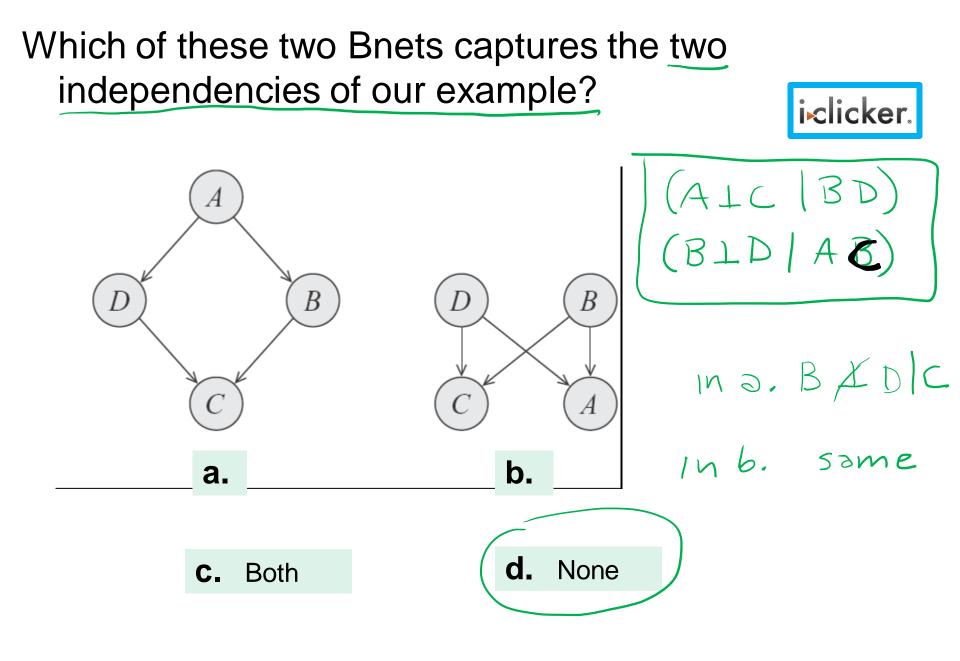
From "Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

Misconception Example

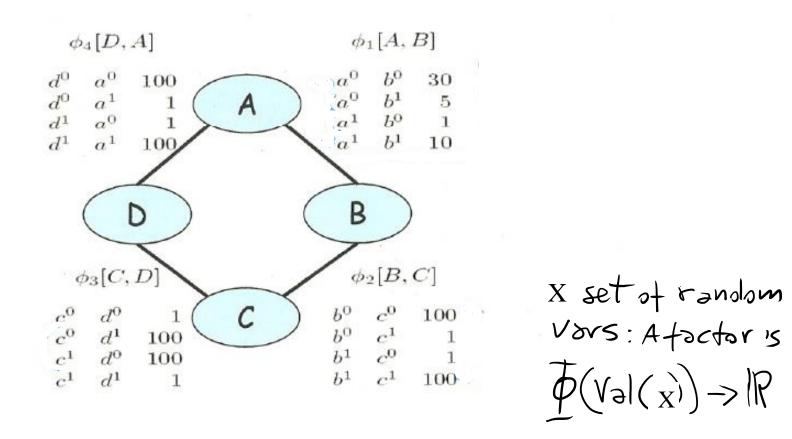
- Four students (Alice, Bill, Debbie, Charles) get together in pairs, to work on a homework
- But only in the following pairs: AB AD DC BC
- Professor misspoke and might have generated misconception
- A student might have figured it out later and told study partner

A random var two values Fourrandom Vars 2' Alice has the misc. 2° Alice doesn't have 1 e misc Slide 5





Parameterization of Markov Networks



Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

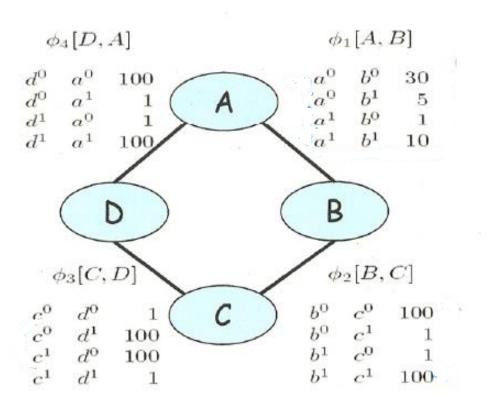
As in BNets by multiplying them!

 $\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$ $P(A, B, C, D) = \frac{1}{Z} \tilde{P}(A, B, C, D) \qquad \qquad P(A, B) ?$

A	ssig	$nm\epsilon$	nt	Unnormalized
0	p_0	c^0	d^0	300000
a^0	b^0	c^0	d^1	300000
a^0	b^0	c^1	d^0	300000
a^0	b^0	c^1	d^1	30
a^0	b^1	c^0	d^0	500
a^0	b^1	c^0	d^1	500
a^0	b^1	c^1	d^0	5000000
a^0	b^1	c^1	d^1	500
a^1	b^0	c^0	d^0	100
a^1	b^0	c^0	d^1	1000000
a^1	b^0	c^1	d^0	100
a^1	b^0	c^1	d^1	100
a^1	b^1	c^0	d^0	10
a^1	b^1	c^0	d^1	100000
a^1	b^1	c^1	d^0	100000
a^1	b^1	c^1	d^1	100000

A 0	a^1	b^1	c^1	0.5.0.5 = 0.25
AB	a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
BC	a^1	b^2	c^1	$0.8 \cdot 0.1 = 0.08$
a^1 b^1 0.5	a^1	b^2	c^2	$0.8 \cdot 0.2 = 0.16$
$a^1 b^2 0.8 \qquad b^1 c^1 0.5$	a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a^2 b^1 0.1 b^1 c^2 0.7	a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2 b^2 0 b^2 c^1 0.1	a^2	b^2	c^1	$0 \cdot 0.1 = 0$
$a^3 b^1 0.3 b^2 c^2 0.2$	a^2	b^2	c^2	0.0.2 = 0
$a^3 b^2 0.9$	a^3	b^1	c^1	0.3.0.5 = 0.15
	a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
in this example A has three values	a^3	b^2	c^1	$0.9 \cdot 0.1 = 0.09$
A has three values	a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

Factors do not represent marginal probs. !

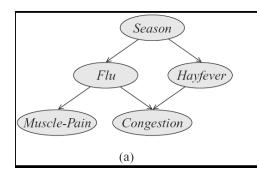


a ⁰ b ⁰	0.13
a ⁰ b ¹	0.69
a ¹ b ⁰	0.14
a ¹ b ¹	0.04

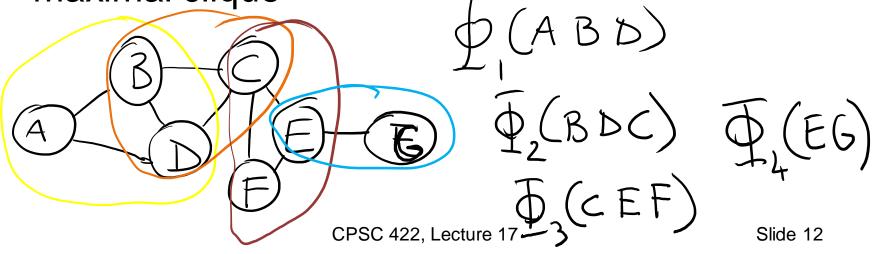
Marginal P(A,B) Computed from the joint

Step Back.... From structure to factors/potentials

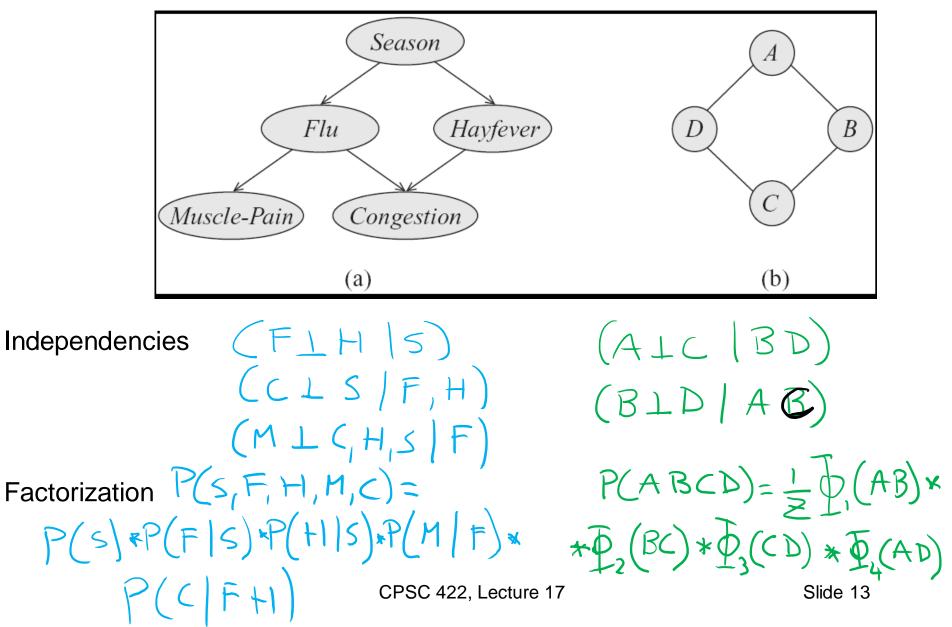
In a Bnet the joint is factorized....



In a Markov Network you have one factor for each maximal clique $-\tau$

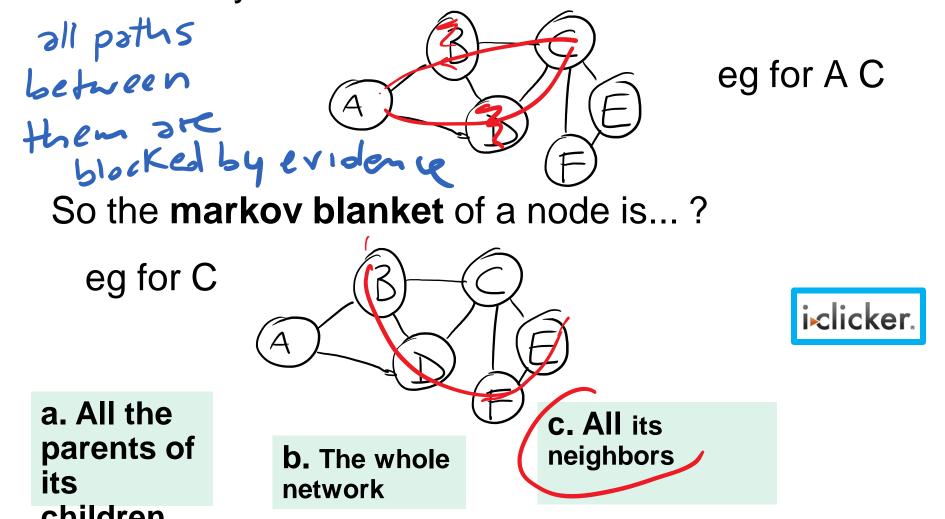


Directed vs. Undirected



General definitions

Two nodes in a Markov network are **independent** if and only if ...

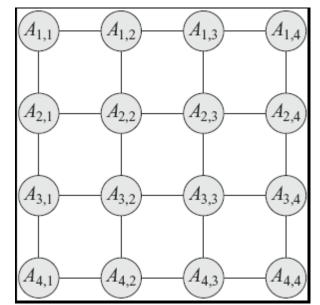


Markov Networks Applications (1): Computer Vision

Called Markov Random Fields

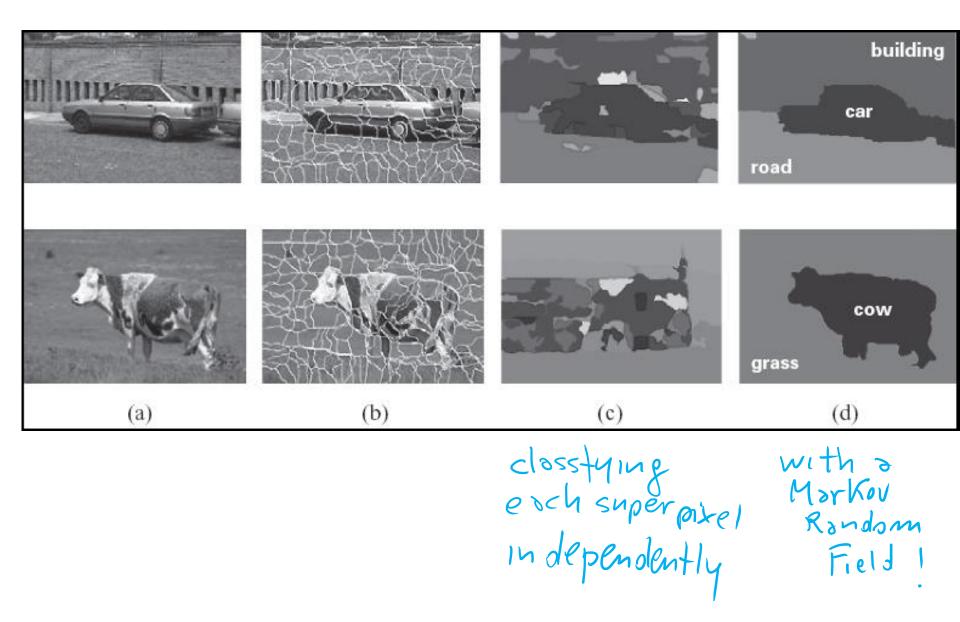
- Stereo Reconstruction
- Image Segmentation
- Object recognition

Typically **pairwise MRF**



- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalize discontinuities, to road under car

Image segmentation



Markov Networks Applications (1): Computer Vision

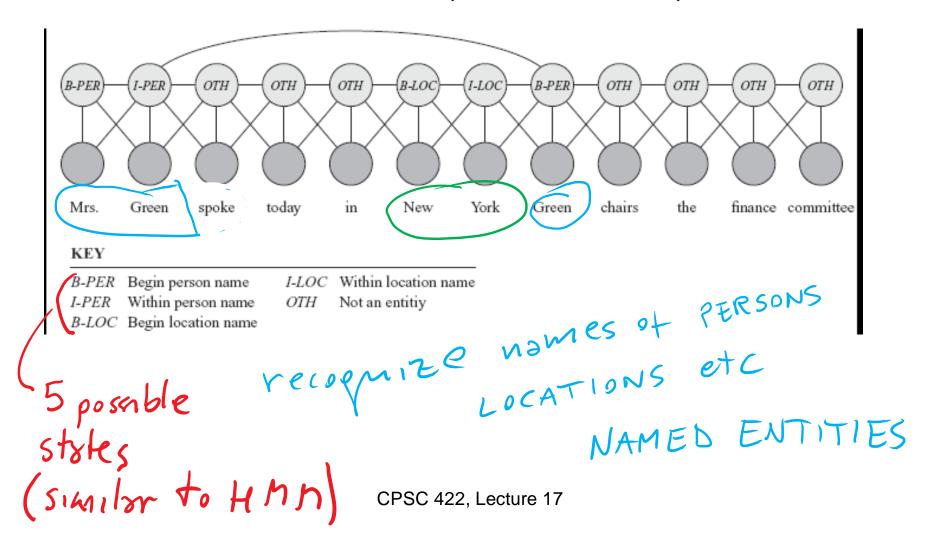
- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalizecond multiplication of the second multipli

SIMPLE EXAMPLE

r030

Markov Networks Applications (2): Sequence Labeling in NLP and BioInformatics

Conditional random fields (next class Fri)



Learning Goals for today's class

≻You can:

- Justify the need for undirected graphical model (Markov Networks)
- Interpret local models (factors/potentials) and combine them to express the joint
- Define independencies and Markov blanket for Markov Networks
- Perform Exact and Approx. Inference in Markov Networks
- Describe a few applications of Markov Networks

Two weeks to Midterm, Fri, Oct 25, we will start at 4pm sharp

How to prepare....

- Keep Working on assignment-2
- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture – complete list will be posted)
- Revise all the clicker questions and practice exercises
- More practice material will be posted next week
- Check questions and answers on Piazza

How to acquire factors?

