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Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 17

Oct, 11, 2019

Slide Sources
D. Koller, Stanford CS - Probabilistic Graphical Models 
D. Page, Whitehead Institute, MIT 

Several Figures from 
“Probabilistic Graphical Models:  Principles and Techniques” D. Koller, N. Friedman 2009



422 big picture: Where are we?

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution

• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies
Temporal rep.

Applications of AI

Approx. : Gibbs

Undirected Graphical 
Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning

Technique

Prob CFG
Prob Relational Models
Markov Logics

Forward, Viterbi….

Approx. : Particle 

Filtering
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StarAI (statistical relational 

AI)

Hybrid: Det +Sto
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Lecture Overview

Probabilistic Graphical models

• Intro

• Example

• Markov Networks Representation (vs. Belief 

Networks)

• Inference in Markov Networks (Exact and Approx.)

• Applications of Markov Networks



Probabilistic Graphical Models
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From “Probabilistic Graphical Models:  Principles and Techniques” D. Koller, N. Friedman 2009



Misconception Example

• Four students (Alice, Bill, Debbie, Charles) get together in 

pairs, to work on a homework

• But only in the following pairs: AB  AD DC BC

• Professor misspoke and might have generated 

misconception

• A student might have figured it out later and told study 

partner
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Example: In/Depencencies

Are A and C independent because they never spoke?

No, because A might have figured it out and told B 

who then told C

But if we know the values of B and D….

And if we know the values of A and C
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a. Yes b. No c. Cannot Tell



Which of these two Bnets captures the two 

independencies of our example?
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a.  b.

c. Both d. None



Parameterization of Markov Networks
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Factors define the local interactions (like CPTs in Bnets)

What about the global model? What do you do with Bnets? 

X

X



How do we combine local models?

As in BNets by multiplying them!
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Multiplying Factors (same seen in 322 for VarElim)
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Factors do not represent marginal 

probs. !

CPSC 422, Lecture 17 11

a0 b0 0.13

a0 b1 0.69

a1 b0 0.14

a1 b1 0.04

Marginal P(A,B) 

Computed from the joint



Step Back…. From structure to 

factors/potentials
In a Bnet the joint is factorized….
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In a Markov Network you have one factor for each 

maximal clique



Directed vs. Undirected

Independencies
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Factorization



General definitions

Two nodes in a Markov network are independent

if and only if ...

So the markov blanket of a node is... ?

eg for C

eg for A C
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a. All the 
parents of 
its 
children 

b. The whole 
network 

c. All its 
neighbors



Markov Networks Applications (1): Computer Vision

Called Markov Random Fields

• Stereo Reconstruction

• Image Segmentation

• Object recognition
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Typically pairwise MRF

• Each vars correspond to a pixel (or superpixel )

• Edges (factors) correspond to interactions 

between adjacent pixels in the image

• E.g., in segmentation: from generically penalize 

discontinuities, to road under car



Image segmentation
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Markov Networks Applications (1): Computer Vision
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• Each vars correspond to a pixel (or superpixel )

• Edges (factors) correspond to interactions 

between adjacent pixels in the image

• E.g., in segmentation: from generically penalize 

discontinuities, to road under car



Markov Networks Applications (2): Sequence 

Labeling in NLP and BioInformatics

Conditional random fields (next class Fri)

CPSC 422, Lecture 17 18



CPSC 422, Lecture 17 Slide 19

Learning Goals for today’s class

➢You can:

• Justify the need for undirected graphical model (Markov 

Networks)

• Interpret local models (factors/potentials) and combine them 

to express the joint

• Define independencies and Markov blanket for Markov 

Networks

• Perform Exact and Approx. Inference in Markov Networks

• Describe a few applications of Markov Networks
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• Keep Working on assignment-2 !

• Go to Office Hours x

• Learning Goals (look at the end of the slides for 
each lecture – complete list will be posted)

• Revise all the clicker questions and practice 
exercises

• More practice material will be posted next week

• Check questions and answers on Piazza

Two weeks to Midterm, Fri, Oct 25, 
we will start at 4pm sharp

How to prepare….



How to acquire factors?
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