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Lecture Overview

Probabilistic temporal Inferences

• Filtering

• Prediction

• Smoothing (forward-backward)

• Most Likely Sequence of States (Viterbi)

• Approx. Inference In Temporal Models 

(Particle Filtering)



Most Likely Sequence 

➢ Suppose that in the rain example we have the following 
umbrella observation sequence

[true, true, false, true, true]

➢ Is the most likely state sequence?

[rain, rain, no-rain, rain, rain]

➢ In this case you may have guessed right… but if you have 
more states and/or more observations, with complex 
transition and observation models…..
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HMMs : most likely sequence (from 322)

Natural Language Processing: e.g., Speech Recognition

• States: phoneme \ word

• Observations:      acoustic signal  \ phoneme

Bioinformatics: Gene Finding

• States: coding / non-coding region

• Observations: DNA Sequences

For these problems the critical inference is: 

find the most likely sequence of states given a sequence of 

observations 



Part-of-Speech (PoS) Tagging
➢ Given a text in natural language, label (tag) each word with its 

syntactic category 

• E.g, Noun, verb, pronoun, preposition, adjective, adverb, article, 
conjunction

➢ Input

• Brainpower, not physical plant, is now a firm's chief asset.

➢ Output

• Brainpower_NN ,_, not_RB physical_JJ plant_NN ,_, is_VBZ
now_RB a_DT firm_NN 's_POS chief_JJ asset_NN ._.

Tag meanings

➢ NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or 
mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS 
(Possessive ending),  . (sentence-final punctuation)



POS Tagging is very useful

• As a basis for Parsing in NL understanding

• Information Retrieval

✓Quickly finding names or other phrases for information extraction

✓Select important words from documents (e.g., nouns)

• Speech synthesis: Knowing PoS produce more natural 
pronunciations 

✓E.g,. Content (noun) vs. content (adjective);  object (noun) vs. 
object (verb)



Most Likely Sequence (Explanation) 

➢ Most Likely Sequence: argmaxx1:T
P(X1:T | e1:T)

➢ Idea

• find the most likely path to each state in XT

• As for  filtering etc. let’s try to develop a recursive solution
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Joint vs. Conditional Prob
➢ You have two binary random variables X and Y 

B. Same x

A.     Different x

argmaxx P(X | Y=t) ? argmaxx P(X , Y=t)

C. It depends X Y P(X , Y)

t t .4

f t .2

t f .1

f f .3



High level rationale

1. The sequence that is maximizing the conditional 

prob is the same that is maximizing the joint (see 

previous clicker question)

2. We will compute the max for the joint and by 

doing that we can then reconstruct the sequence 

that is maximizing the joint

3. Which is the same that is maximizing the 

conditional prob



Most Likely Sequence: Formal Derivation (step 2: 
compute the max for the joint ) 

max x1,...xt
P(x1,.... xt ,xt+1, e1:t+1)= max x1,...xt

P(x1,.... xt ,xt+1,e1:t, et+1)=

= max x1,...xt
P(et+1|e1:t, x1,.... xt ,xt+1) P(x1,.... xt ,xt+1,e1:t)=

= max x1,...xt
P(et+1|xt+1) P(x1,.... xt ,xt+1,e1:t)=

= max x1,...xt
P(et+1|xt+1) P(xt+1| x1,.... xt , e1:t)P(x1,.... xt , e1:t)=

= max x1,...xt
P(et+1 |xt+1) P(xt+1|xt) P(x1,.... xt-1 ,xt, e1:t) =

P(et+1 |xt+1) max xt
(P(xt+1|xt) max x1,...xt-1

P(x1,.... xt-1 ,xt, e1:t)) 

Markov Assumption

Markov Assumption

Move outside the max
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Cond. Prob

Cond. Prob



Most Likely Sequence: Formal Derivation (step 2: 
compute the max for the joint ) 

max x1,...xt
P(x1,.... xt ,xt+1, e1:t+1)= max x1,...xt

P(x1,.... xt ,xt+1,e1:t, et+1)=

= max x1,...xt
P(et+1|e1:t, x1,.... xt ,xt+1) P(x1,.... xt ,xt+1,e1:t)=

= max x1,...xt
P(et+1|xt+1) P(x1,.... xt ,xt+1,e1:t)=

= max x1,...xt
P(et+1|xt+1) P(xt+1| x1,.... xt , e1:t)P(x1,.... xt , e1:t)=

= max x1,...xt
P(et+1 |xt+1) P(xt+1|xt) P(x1,.... xt-1 ,xt, e1:t) =

P(et+1 |xt+1) max xt
(P(xt+1|xt) max x1,...xt-1

P(x1,.... xt-1 ,xt, e1:t)) 

Markov Assumption

Markov Assumption

Move outside the max
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Cond. Prob

Cond. Prob



Intuition behind solution
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P(et+1 |xt+1) max xt
(P(xt+1|xt) max x1,...xt-1

P(x1,.... xt-1 ,xt,e1:t)) 



The probability of the most likely path to S2 at time t+1 is:

CPSC 422, Lecture 16 Slide 13

P(et+1 |xt+1) max xt
(P(xt+1|xt) max x1,...xt-1

P(x1,.... xt-1 ,xt,e1:t)) 



Most Likely Sequence 

➢ Identical to filtering (notation warning: this is expressed for Xt+1

instead of Xt , it does not make any difference!) 

P(Xt+1 | e1:t+1) = α P(et+1 | Xt+1) ∑xt
P(Xt+1 | xt ) P( xt| e1:t )

max x1,...xt
P(x1,.... xt ,Xt+1,e1:t+1) 

= P(et+1 |Xt+1) max xt
(P(Xt+1|xt) max x1,...xt-1

P(x1,.... xt-1 ,xt,e1:t) 

➢ f1:t =  P(Xt |e1:t ) is replaced by

• m1:t = max x1,...xt-1
P(x1,.... xt-1 ,Xt,e1:t)   (*)

➢ the summation in the filtering equations is replaced by 

maximization in the most likely sequence equations

Recursive call

CPSC 422, Lecture 16 Slide 14



Rain Example 
• max x1,...xt

P(x1,.... xt ,Xt+1,e1:t+1)   = P(et+1 |Xt+1) max xt
[(P(Xt+1|xt) m 1:t]

m 1:t = maxx1,...xt-1
P(x1,.... xt-1 ,Xt,e1:t)

• m 1:1 is just P(R1|u) = <0.818,0.182>

• m 1:2 = 

P(u2|R2) <max [P(r2|r1) * 0.818, P(r2| ┐r1) 0.182], max [P(┐r2|r1) * 0.818, P(┐r2| ┐r1) 0.182]=

= <0.9,0.2><max(0.7*0.818, 0.3*0.182), max(0.3*0.818, 0.7*0.182)= 

=<0.9,0.2>*<0.573, 0.245>= <0.515, 0.049>

0.818

0.182

0.515

0.049
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Rain Example 

m 1:3 = 

P(┐u3|R3) <max [P(r3|r2) * 0.515, P(r3| ┐r2) *0.049], max [P(┐ r3|r2) * 0.515, P(┐r3| ┐r2) 0.049)=

= <0.1,0.8><max(0.7* 0.515, 0.3* 0.049), max(0.3* 0.515, 0.7* 0.049)= 

=<0.1,0.8>*<0.36, 0.155>= <0.036, 0.124>

0.818

0.182

0.515

0.049

0.036

0.124
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Viterbi Algorithm 
➢ Computes the most likely sequence to Xt+1 by

• running forward along the sequence

• computing the m message at each time step

• Keep back pointers to states that maximize the function

• in the end the message has  the prob. Of the most likely sequence to 
each of the final states

• we can pick the most likely one and build the path by retracing the 
back pointers
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Viterbi Algorithm: Complexity 

➢ Time complexity?

➢ Space complexity
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B. O(T S2) A. O(T2 S) C. O(T2 S2) 

B. O(T2 S) A. O(T S) C. O(T2 S2) 

T = number of time slices

S = number of states
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Lecture Overview

Probabilistic temporal Inferences

• Filtering

• Prediction

• Smoothing (forward-backward)

• Most Likely Sequence of States (Viterbi)

• Approx. Inference In Temporal Models 

(Particle Filtering)



Limitations of Exact Algorithms

• HMM has  very large number of states

• Our temporal model is a Dynamic Belief Network 

with several “state” variables

Exact algorithms do not scale up 

What to do?



Approximate Inference

Basic idea:

• Draw N samples from known prob. distributions

• Use those samples to estimate unknown prob. 
distributions

Why sample?

• Inference: getting N samples is faster than computing 
the right answer (e.g. with Filtering)
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Simple but Powerful Approach:

Particle Filtering

Idea from Exact Filtering:  should be able to 
compute P(Xt+1 | e1:t+1)  from P( Xt | e1:t )

“.. One slice from the previous slice…”

Idea from Likelihood Weighting

• Samples should be weighted by the 
probability of evidence given parents

New Idea: run multiple samples simultaneously 
through the network
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Particle Filtering
• Run all N samples together through the network, one slice at 

a time

STEP 0: Generate a population on N initial-state samples by  

sampling  from initial state distribution P(X0)

N = 10



Particle Filtering

STEP 1: Propagate each sample for xt forward by sampling the 

next state value  xt+1 based on P(Xt+1 |Xt ) 

Rt P(Rt+1=t)

t

f

0.7

0.3



Particle Filtering

STEP 2: Weight each sample by the likelihood it assigns to 

the evidence

• E.g. assume we observe not umbrella  at t+1

Rt P(ut) P(┐ut)

t

f

0.9

0.2

0.1

0.8



Particle Filtering

STEP 3: Create a new population from the population at Xt+1, i.e. 

resample the population so that the probability that each sample 

is selected is proportional to its weight

➢ Start the Particle Filtering cycle again from the new sample



In practice, approximation error of particle filtering remains 

bounded overtime

Is PF Efficient?

It is also possible to prove that the approximation maintains 

bounded error with high probability 

(with specific assumption: probs in transition and sensor models >0 and <1)



422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning
Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering

CPSC 422, Lecture 35 Slide 28



CPSC 422, Lecture 16 Slide 29

Learning Goals for today’s class

➢You can:

• Describe the problem of finding the most likely sequence of 

states (given a sequence of observations), derive its 

solution (Viterbi algorithm)  by manipulating probabilities 

and applying it to a temporal model

• Describe and apply Particle Filtering for approx. inference 

in temporal models. 
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TODO for Mon

• Keep working on Assignment-2: due Fri Oct 20

• Midterm : October 25
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TODO for Fri

• Keep working on Assignment-2: due Fri Oct 18

• Midterm : October 25


