# Intelligent Systems (AI-2)

### **Computer Science cpsc422, Lecture 16**

Oct, 9, 2019



CPSC 422, Lecture 16

# **Lecture Overview**

#### Probabilistic temporal Inferences

- Filtering
- Prediction
- Smoothing (forward-backward)
- Most Likely Sequence of States (Viterbi)
- Approx. Inference In Temporal Models (Particle Filtering)

### **Most Likely Sequence**

Suppose that in the rain example we have the following umbrella observation sequence

[true, true, false, true, true]

Is the most likely state sequence?

[rain, rain, no-rain, rain, rain]

In this case you may have guessed right... but if you have more states and/or more observations, with complex transition and observation models.....

# HMMs : most likely sequence (from 322)

#### Natural Language Processing: e.g., Speech Recognition



#### **Bioinformatics**: Gene Finding

- States: coding / non-coding region

XX VVV XX ATCGGAA

#### For these problems the critical inference is:

find the most likely sequence of states given a sequence of observations

CPSC 322, Lecture 32

## Part-of-Speech (PoS) Tagging

- Given a text in natural language, label (tag) each word with its syntactic category
  - E.g, Noun, verb, pronoun, preposition, adjective, adverb, article, conjunction

#### > Input

• Brainpower, not physical plant, is now a firm's chief asset.

#### > Output

 Brainpower\_NN ,\_\_, not\_RB physical\_JJ plant\_NN ,\_\_, is\_VBZ now\_RB a\_DT firm\_NN 's\_POS chief\_JJ asset\_NN .\_\_.

#### Tag meanings

NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS (Possessive ending), . (sentence-final punctuation)

## **POS Tagging is very useful**

- As a basis for **Parsing** in NL understanding
- Information Retrieval
  - $\checkmark$  Quickly finding names or other phrases for information extraction

✓ Select important words from documents (e.g., nouns)

- Speech synthesis: Knowing PoS produce more natural pronunciations
  - E.g., Content (noun) vs. content (adjective); object (noun) vs. object (verb)

## Most Likely Sequence (Explanation)

> Most Likely Sequence:  $\operatorname{argmax}_{x_{1:T}} P(X_{1:T} | e_{1:T})$ 

≻ Idea

• find the most likely path to each state in  $X_T$ 



Raing= false

• As for filtering etc. let's try to develop a recursive solution



CPSC 422, Lecture 16

## **Joint vs. Conditional Prob**

> You have two binary random variables X and Y

 $\operatorname{argmax}_{\mathbf{r}} P(X \mid Y=t) ? \operatorname{argmax}_{\mathbf{r}} P(X, Y=t)$ i⊧clicker. Different x Α. B. Same x **C.** It depends P(X, Y)Х Y K X=t Lorboth .4 t t .2 f t

.1

.3

f

f

t

f

# **High level rationale**

- 1. The sequence that is maximizing the conditional prob is the same that is maximizing the joint (see previous clicker question)
- 2. We will compute the max for the joint and by doing that we can then reconstruct the sequence that is maximizing the joint
- 3. Which is the same that is maximizing the conditional prob

# Most Likely Sequence: Formal Derivation (step 2: compute the max for the joint )

$$\max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t+1}) = \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t},\mathbf{e}_{t+1}) = Cond. Prob$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{e}_{1:t},\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = Markov Assumption$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = Cond. Prob$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) = Markov Assumption$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) = Markov Assumption$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{t}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) = Move outside the max$$

$$\mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \max_{\mathbf{x}_{t}} (\mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1},...,\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{x}_{t},\mathbf{e}_{1:t}))$$

### Nost Likely Sequence: Formal Derivation (step 2 compute the max for the joint )

$$\max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t+1}) = \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t},\mathbf{e}_{t+1}) = Cond. Prob$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{e}_{1:t},\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = Markov Assumption$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = Cond. Prob$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) = Cond. Prob$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) = Markov Assumption$$

$$= \max_{\mathbf{x_{1},...,x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{t}) \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{x}_{t},\mathbf{e}_{1:t}) = Move outside the max$$

$$\mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \max_{\mathbf{x}_{t}} (\mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1},...,\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{x}_{t},\mathbf{e}_{1:t}))$$



prob. of the most likely path to state Si ofter obs elit CPSC 422, Lecture 16 Slide 12

$$\mathbf{P}(\mathbf{e_{t+1}} | \mathbf{x_{t+1}}) \max_{\mathbf{x_t}} (\mathbf{P}(\mathbf{x_{t+1}} | \mathbf{x_t}) \max_{\mathbf{x_1, \dots, x_{t-1}}} \mathbf{P}(\mathbf{x_1, \dots, x_{t, t}, e_{1:t}}))$$

The probability of the most likely path to  $S_2$  at time t+1 is:

$$P(e_{t+1}|s_2) * M \ge \begin{pmatrix} P(s_2|s_1) * M L P_1 \\ P(s_2|s_2) * M \ge \chi \\ P(s_2|s_2) * M L P_2 \\ P(s_2|s_3) * M L P_3 \end{pmatrix}$$

## **Most Likely Sequence**

Identical to filtering (notation warning: this is expressed for X<sub>t+1</sub> instead of X<sub>t</sub>, it does not make any difference!)

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$
  
max  $x_1,...,x_t P(x_1,..., x_t, X_{t+1}, e_{1:t+1})$   

$$= P(e_{t+1} | X_{t+1}) \max_{x_t} P(X_{t+1} | x_t) \max_{x_1,...,x_{t-1}} P(x_1,..., x_{t-1}, x_t, e_{1:t})$$

$$\mathbf{F} \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_{t} | \mathbf{e}_{1:t})$$
 is replaced by

• 
$$\boldsymbol{m}_{1:t} = \max_{\mathbf{x}_{1},...,\mathbf{x}_{t-1}} P(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{X}_{t},\mathbf{e}_{1:t})$$
 (\*)

the summation in the filtering equations is replaced by maximization in the most likely sequence equations

#### Rain Example

• max  $_{x_1,...,x_t} \mathbf{P}(\mathbf{x}_1,...,\mathbf{x}_t,\mathbf{X}_{t+1},\mathbf{e}_{1:t+1}) \neq \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{x_t} [(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) | \mathbf{m}_{1:t}]]$  $m_{1:t} = \max_{x_1, \dots, x_{t-1}} P(x_1, \dots, x_{t-1}, X_t, e_{1:t})$ Rain<sub>1</sub> Rain<sub>2</sub> Rain 3  $Rain_A$ Rain<sub>5</sub> 0.818 0.515 true true true (a) 0.182 0.049 false false false  $Umbrella_t$ false true true true true what is the most likely way to end up in Rain=T ax [P(ralr.) \* 0 210 D •  $m_{1:1}$  is just  $P(R_1|u) = \langle 0.818, 0.182 \rangle$  $m_{1:2} =$  $P(u_2|R_2)$  max  $[P(r_2|r_1) * 0.818, P(r_2|r_1) 0.182], max [P(r_2|r_1) * 0.818, P(r_2|r_1) 0.182] = 1000$  $= \langle 0.9, 0.2 \rangle \langle \max(0.7*0.818, 0.3*0.182), \max(0.3*0.818, 0.7*0.182) \rangle$ =<0.9,0.2>\*<0.573, 0.245>=<0.515, 0.049>

CPSC 422, Lecture 16

## **Rain Example**



#### m <sub>1:3</sub> =

 $\begin{aligned} \mathbf{P}(\mathbf{y} | \mathbf{u}_{3} | \mathbf{R}_{3}) &< \max \left[ \mathbf{P}(\mathbf{r}_{3} | \mathbf{r}_{2}) * 0.515, \mathbf{P}(\mathbf{r}_{3} | \mathbf{y}_{2}) * 0.049 \right], \max \left[ \mathbf{P}(\mathbf{y} | \mathbf{r}_{3} | \mathbf{r}_{2}) * 0.515, \mathbf{P}(\mathbf{y} | \mathbf{r}_{3} | \mathbf{r}_{2}) 0.049 \right] = \\ &= <0.1, 0.8 > <\max(0.7 * 0.515, 0.3 * 0.049), \max(0.3 * 0.515, 0.7 * 0.049) = \\ &= <0.1, 0.8 > * <0.36, 0.155 > = <0.036, 0.124 > \end{aligned}$ 

### Viterbi Algorithm

- > Computes the most likely sequence to  $X_{t+1}$  by
  - running forward along the sequence
  - computing the *m* message at each time step
  - Keep back pointers to states that maximize the function
  - in the end the message has the prob. Of the most likely sequence to each of the final states
  - we can pick the most likely one and build the path by retracing the back pointers



CPSC 422, Lecture 16

### **Viterbi Algorithm: Complexity**

T = number of time slices S = number of states







# **Lecture Overview**

#### Probabilistic temporal Inferences

- Filtering
- Prediction
- Smoothing (forward-backward)
- Most Likely Sequence of States (Viterbi)
- Approx. Inference In Temporal Models (Particle Filtering)

## Limitations of Exact Algorithms

- HMM has very large number of states
- Our temporal model is a Dynamic Belief Network with several "state" variables

Exact algorithms do not scale up ③ *What to do?* 

# **Approximate Inference**

#### Basic idea:

- Draw N samples from known prob. distributions
- Use those samples to estimate unknown prob. distributions

#### Why sample?

• Inference: getting N samples is faster than computing the right answer (e.g. with Filtering)

# Simple but Powerful Approach: Particle Filtering

# **Idea from Exact Filtering:** should be able to compute $P(X_{t+1} | e_{1:t+1})$ from $P(X_t | e_{1:t})$

"... One slice from the previous slice ... "

#### Idea from Likelihood Weighting

• Samples should be weighted by the probability of evidence given parents

**New Idea:** run multiple samples simultaneously through the network

- Run all N samples together through the network, one slice at a time
- **STEP 0:** Generate a population on N initial-state samples by sampling from initial state distribution  $P(X_0)$



**STEP 1**: Propagate each sample for  $x_t$  forward by sampling the next state value  $x_{t+1}$  based on  $P(X_{t+1}|X_t)$ 



STEP 2: Weight each sample by the likelihood it assigns to the evidence



STEP 3: Create a new population from the population at  $X_{t+1}$ , i.e. resample the population so that the probability that each sample is selected is proportional to its weight



Start the Particle Filtering cycle again from the new sample

## **Is PF Efficient?**

# In practice, approximation error of particle filtering remains bounded overtime



It is also possible to prove that the approximation maintains bounded error with high probability

(with specific assumption: probs in transition and sensor models >0 and <1)

|                  |                                               |                                                                                                | <b>StarAl (statistical relational Al)</b> |                        |
|------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|
| 422 big picture  |                                               |                                                                                                | Hybrid: Det +Sto<br>Prob CFG              |                        |
|                  |                                               |                                                                                                |                                           |                        |
|                  | Deterministic                                 | Stochastic                                                                                     | Markov                                    | Logics                 |
|                  |                                               | Belief Nets                                                                                    |                                           |                        |
| Query<br>Plannir | Logics                                        | Approx. : Gibbs                                                                                |                                           |                        |
|                  | First Order Logics                            | Markov Chai                                                                                    |                                           |                        |
|                  | Ontologies                                    | Forward, Viterbi<br>Approx. : Particle Filtering                                               |                                           |                        |
|                  |                                               |                                                                                                |                                           |                        |
|                  | <ul><li>Full Resolution</li><li>SAT</li></ul> | Undirected (<br>Markov N<br>Conditiona                                                         | 5                                         |                        |
|                  | ng                                            | Markov Decision Processes<br>and<br>Par <u>tially Observable MDP</u>                           |                                           |                        |
|                  |                                               | <ul> <li>Value Iteration</li> <li>Approx. Inference</li> <li>Reinforcement Learning</li> </ul> |                                           |                        |
| -                |                                               |                                                                                                |                                           | Representation         |
|                  | Applications of A                             |                                                                                                | /                                         | Reasoning<br>Technique |
| L                |                                               |                                                                                                |                                           |                        |

# Learning Goals for today's class

## ≻You can:

- Describe the problem of finding the most likely sequence of states (given a sequence of observations), derive its solution (Viterbi algorithm) by manipulating probabilities and applying it to a temporal model
- Describe and apply Particle Filtering for approx. inference in temporal models.

# **TODO for Mon**

- Keep working on Assignment-2: due Fri Oct 20
- Midterm : October 25

# **TODO for Fri**

- Keep working on Assignment-2: due Fri Oct 18
- Midterm : October 25