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Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 14

Oct, 4, 2019

Slide credit: some slides adapted from Stuart Russell (Berkeley)



422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning
Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering
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Lecture Overview

(Temporal Inference)

• Filtering (posterior distribution over the current state given 

evidence to date)

• From intuitive explanation to formal derivation

• Example

• Prediction (posterior distribution over a future state given 

evidence to date)

• (start) Smoothing (posterior distribution over a past state 

given all evidence to date)
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Markov Models 

Markov Chains

Hidden Markov 
Model

Markov Decision 
Processes (MDPs)
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Partially Observable 
Markov Decision 

Processes (POMDPs)
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Hidden Markov Model

• P (X0) specifies initial conditions

• P (Xt+1|Xt) specifies the dynamics

• P (Et |St) specifies the sensor model

• A Hidden Markov Model (HMM) starts with a Markov 
chain, and adds a noisy observation/evidence about the 
state at each time step:

• |domain(X)| = k

• |domain(E)| = h



Simple Example 
(We’ll use this as a running example)

➢ Guard stuck in a high-security bunker

➢ Would like to know if it is raining outside

➢ Can only tell by looking at whether his boss comes into the bunker 
with an umbrella every day Transition 

model State

variables

Observable 

variables

Observation 

model



Useful inference in HMMs
• In general (Filtering): compute the posterior 

distribution over the current state given all 
evidence to date
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P(Xt | e0:t ) 



Intuitive Explanation for filtering recursive formula
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P(Xt | e0:t ) 



Filtering 

➢ Idea: recursive approach

• Compute filtering up to time t-1, and then include the evidence for time t 
(recursive estimation)

➢ P(Xt | e0:t) = P(Xt | e0:t-1,et )     dividing up the evidence

= α P(et | Xt, e0:t-1 ) P(Xt | e0:t-1 )  WHY?

= α P(et | Xt) P(Xt | e0:t-1 )  WHY?

One step prediction of current state 

given evidence up to t-1
Inclusion of new evidence: this is 

available from..

➢ So we only need to compute P(Xt | e0:t-1 )

A. Bayes Rule

B. Cond. Independence

C. Product Rule



CPSC 422, Lecture 14 Slide 10



“moving” the conditioning
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Filtering 

➢ Compute P(Xt | e0:t-1 )

P(Xt | e0:t-1 ) = ∑xt-1
P(Xt, xt-1 |e0:t-1 ) = ∑xt-1

P(Xt | xt-1 , e0:t-1 ) P( xt-1 | e0:t-1 ) = 

= ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) because of..

➢ Putting it all together, we have the desired recursive formulation 

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) 

➢ P( Xt-1 | e0:t-1 ) can be seen as a message f0:t-1 that is propagated 
forward along the sequence, modified by each transition and updated 
by each observation

Filtering at time t-1
Inclusion of new evidence

(sensor model)

Propagation to time t

why?

Filtering at time t-1Transition model!

Prove it?



Filtering 

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 )

➢ Thus, the recursive definition of filtering at time t in terms of 

filtering at time t-1 can be expressed as a FORWARD procedure

• f0:t  = α FORWARD (f0:t-1, et) 

➢ which implements the update described in

Filtering at time t-1

Inclusion of new evidence

(sensor model)
Propagation to time t



Analysis of Filtering 

➢ Because of the recursive definition in terms for the forward 
message, when all variables are discrete the time for each 
update is constant (i.e. independent of t )

➢ The constant depends of course on the size of the state 
space



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

➢ Suppose our security guard came with a prior belief of 0.5 that it rained on 

day 0, just before the observation sequence started. 

➢ Without loss of generality, this can be modelled with a fictitious state R0 with 

no associated observation and P(R0) = <0.5, 0.5>

➢ Day 1: umbrella appears (u1). Thus

P(R1 | e0:t-1 ) = P(R1) = ∑r0
P(R1 | r0 ) P(r0 ) 

= <0.7, 0.3> * 0.5 + <0.3,0.7> * 0.5 = <0.5,0.5>

TRUE     0.5

FALSE   0.5

0.5

0.5

Rt-1 P(Rt)

t

f

0.7

0.3

Rt P(Ut)

t

f

0.9

0.2



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

➢ Updating this with evidence from for t =1 (umbrella appeared) gives

P(R1| u1) = α P(u1 | R1) P(R1) = 

α<0.9, 0.2><0.5,0.5> = α<0.45, 0.1> ~ <0.818, 0.182> 

➢ Day 2: umbella appears (u2). Thus

P(R2 | e0:t-1 ) = P(R2 | u1 ) = ∑r1
P(R2 | r1 ) P(r1 | u1) =

= <0.7, 0.3> * 0.818 + <0.3,0.7> * 0.182 ~ <0.627,0.373>

TRUE     0.5

FALSE   0.5

0.5

0.5

0.818

0.182

0.627

0.373

Rt-1 P(Rt)

t

f

0.7

0.3

Rt P(Ut)

t

f

0.9

0.2



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

➢ Updating this with evidence from for t =2 (umbrella appeared) gives

P(R2| u1 , u2) = α P(u2 | R2) P(R2| u1) = 

α<0.9, 0.2><0.627,0.373> = α<0.565, 0.075> ~ <0.883, 0.117> 

➢ Intuitively, the probability of rain increases, because the umbrella appears twice 

in a row

TRUE     0.5

FALSE   0.5

0.5

0.5

0.818

0.182

0.627

0.373

0.883

0.117



Practice exercise (home)

Compute filtering at t3 if the 3rd observation/evidence is no 

umbrella (will put solution on inked slides)
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Lecture Overview

• Filtering (posterior distribution over the current state given 

evidence to date)

• From intuitive explanation to formal derivation

• Example

• Prediction (posterior distribution over a future state given 

evidence to date)

• (start) Smoothing (posterior distribution over a past state 

given all evidence to date)



Prediction P(Xt+k+1 | e0:t )

➢ Can be seen as filtering without addition of new evidence

➢ In fact, filtering already contains a one-step prediction

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) 

Filtering at time t-1
Inclusion of new evidence

(sensor model)
Propagation to time t

➢ We need to show how to recursively predict the state at time t+k +1 from a 
prediction for state t + k

P(Xt+k+1 | e0:t ) = ∑xt+k
P(Xt+k+1, xt+k |e0:t ) = ∑xt+k

P(Xt+k+1 | xt+k , e0:t ) P( xt+k | e0:t ) = 

= ∑xt+k
P(Xt+k+1 | xt+k ) P( xt+k | e0:t )

➢ Let‘s continue with the rain example and compute the probability of Rain on 
day four after having seen the umbrella in day one and two: P(R4| u1 , u2) 

Prediction for state t+ k

Transition model



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

➢ Prediction from day 2 to day 3

P(X3 | e1:2 ) = ∑x2
P(X3 | x2 ) P( x2 | e1:2 ) = ∑r2

P(R3 | r2 ) P( r2 | u1 u2 ) = 

= <0.7,0.3>*0.883 + <0.3,0.7>*0.117 = <0.618,0.265> + <0.035, 0.082> 

= <0.653, 0.347>

0.5

0.5

0.5

0.5

0.818

0.182

0.627

0.373

0.883

0.117

Rain3

Umbrella3

0.653

0.347

➢ Prediction from day 3 to day 4

P(X4 | e1:2 ) = ∑x3
P(X4 | x3 ) P( x3 | e1:2 ) = ∑r3

P(R4 | r3 ) P( r3 | u1 u2 ) = 

= <0.7,0.3>*0.653 + <0.3,0.7>*0.347= <0.457,0.196> + <0.104, 0.243> 

= <0.561, 0.439>

Rain4

Umbrella4

0.561

0.439

Rt-1 P(Rt)

t

f

0.7

0.3

Rt P(Ut)

t

f

0.9

0.2
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Lecture Overview

• Filtering (posterior distribution over the current state given 

evidence to date)

• From intuitive explanation to formal derivation

• Example

• Prediction (posterior distribution over a future state given 

evidence to date)

• (start) Smoothing (posterior distribution over a past state 

given all evidence to date)



Smoothing 

➢Smoothing: Compute the posterior distribution over a 

past state given all evidence to date

• P(Xk | e0:t ) for 1 ≤ k < t

E0



Smoothing 

➢ P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using… 

= α P(Xk | e0:k ) P(ek+1:t | Xk)  using…

backward message, 

b k+1:t

computed by a 

recursive process 

that runs 

backwards from t

forward message from 

filtering up to state k, 

f 0:k



Smoothing 

➢ P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using Bayes Rule

= α P(Xk | e0:k ) P(ek+1:t | Xk) By Markov assumption on evidence

backward message, 

b k+1:t

computed by a recursive process 

that runs backwards from t

forward message from 

filtering up to state k, 

f 0:k
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Learning Goals for today’s class

➢You can:

• Describe Filtering and derive it by manipulating 

probabilities

• Describe Prediction and derive it by manipulating 

probabilities

• Describe Smoothing and derive it by manipulating 

probabilities
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TODO for Mon

• Keep Reading Textbook Chp 8.5

• Keep working on assignment-2 (due on Fri, 
Oct 18)


