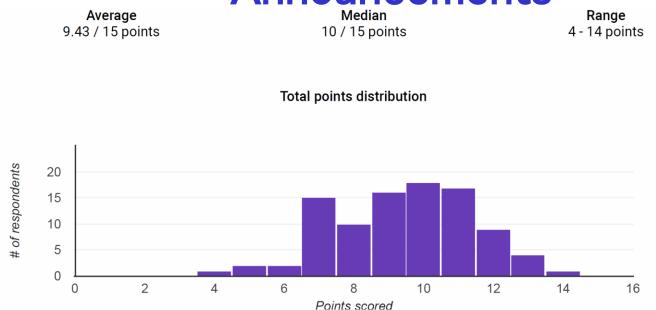
Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 4

Sep, 15, 2017



Office Hours have been posted

- •Giuseppe Carenini ICICS (CICSR) 105 Wed 1-2
- •Jordon Johnson ICCS X237, Th 10-12
- •Siddhesh Khandelwal ICCS X237, W 2-4
- •Dave Johnson ICCS X237, F 11-12

What to do with readings? In a few lectures we will discuss the first research paper. Instructions on what to do are available on the course webpage.

Last year Conference (program co-chair)

17th Annual SIGdial Meeting on Discourse and Dialogue Los Angeles, USA, September 13-15, 2016

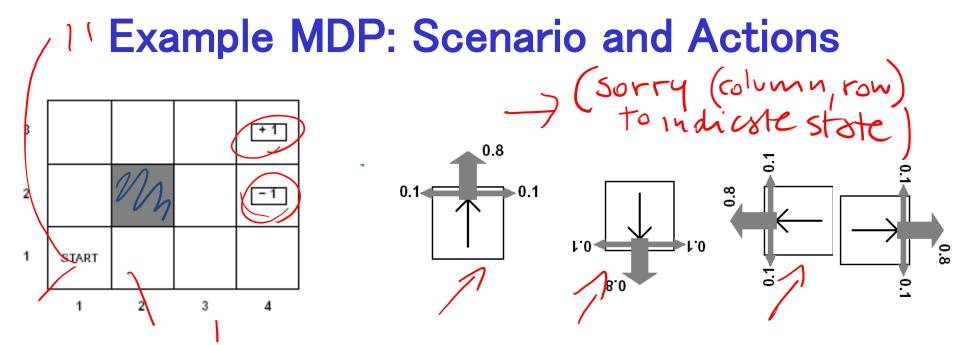
Four papers using (PO)MDP & Reinforcement Learning!

Four papers this year as well·····

Lecture Overview

Markov Decision Processes

- Some ideas and notation
- Finding the Optimal Policy
 - Value Iteration
- From Values to the Policy
- Rewards and Optimal Policy



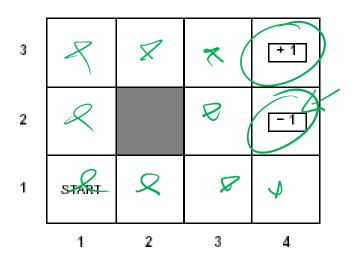
Agent moves in the above grid via actions *Up, Down, Left, Right* Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it says there

Eleven states

Two terminal states (4,3) and (4,2)

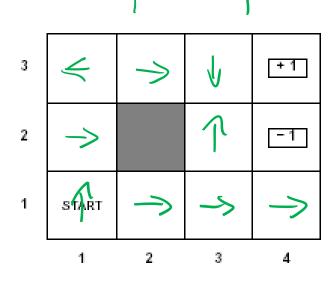
Example MDP: Rewards



$$R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$

MDPs: Policy

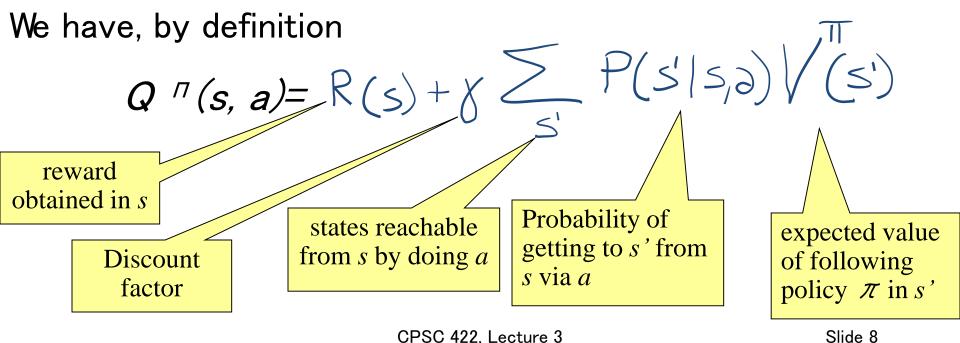
- The robot needs to know what to do as the decision process unfolds…
- It starts in a state, selects an action, ends up in another state selects another action...
- Needs to make the same decision over and over: Given the current state what should I do?
 - So a policy for an MDP is a single decision function π(s) that specifies what the agent should do for each state s



Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

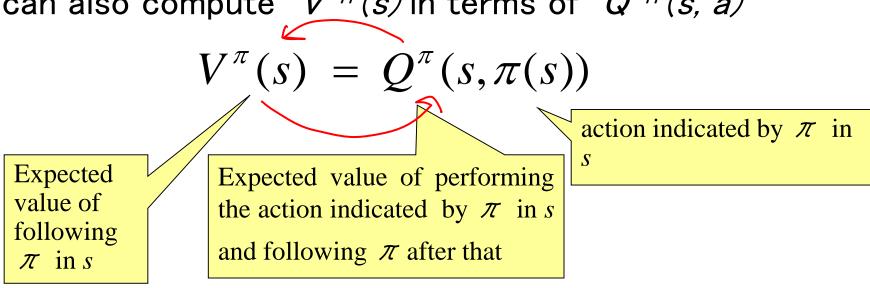
We first need a couple of definitions

- $^{\bullet}$ V $^{\sqcap}$ (s): the expected value of following policy π in state s
- Q \sqcap (s, a), where a is an action: expected value of performing a in s, and then following policy π .



Value of a policy and Optimal policy

We can also compute $V^{\pi}(s)$ in terms of $Q^{\pi}(s, a)$



For the optimal policy $\pi *$ we also have

$$V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s))$$

Value of Optimal policy

$$V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s))$$

Remember for any policy π

$$Q^{\pi}(s,\pi(s)) = R(s) + \gamma \sum_{s'} P(s'|s,\pi(s)) \times V^{\pi}(s'))$$

But the Optimal policy $\pi*$ is the one that gives the action that maximizes the future reward for each state

$$Q^{\pi^*}(s,\pi^*(s)) = R(s) + \gamma \quad \text{max} \left(\frac{s'}{s} \right) \times \sqrt{(s')}$$

$$V^{\pi^*}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) \times V^{\pi^*}(s'))$$

Value Iteration Rationale

➤ Given N states, we can write an equation like the one below for each of them

$$V(s_1) = R(s_1) + \gamma \max_{a} \sum_{s'} P(s'|s_1, a)V(s')$$

$$V(s_2) = R(s_2) + \gamma \max_{a} \sum_{s'} P(s'|s_2, a)V(s')$$

- ➤ Each equation contains N unknowns the V values for the N states
- N equations in N variables (Bellman equations): It can be shown that they have a unique solution: the values for the optimal policy
- Unfortunately the N equations are non-linear, because of the max operator: Cannot be easily solved by using techniques from linear algebra
- Value Iteration Algorithm: Iterative approach to find the V values and the corresponding
- optimal policy

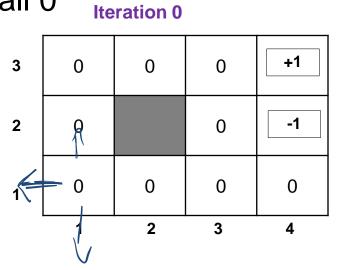
Value Iteration in Practice

- ightharpoonup Let $V^{(i)}(s)$ be the utility of state s at the ith iteration of the algorithm
- > Start with arbitrary utilities on each state s: $V^{(0)}(s)$
- > Repeat simultaneously for every s until there is "no change"

$$V^{(k+1)}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V^{(k)}(s')$$

- ➤ True "no change" in the values of V(s) from one iteration to the next are guaranteed only if run for infinitely long.
 - In the limit, this process converges to a unique set of solutions for the Bellman equations
 - They are the total expected rewards (utilities) for the optimal policy

Example (Sorry (column, row) to indicate state)
Suppose, for instance, that we start with values V⁽⁰⁾(s) that are all 0



Iteration 1				
3	0	0	0	+1
2	0		0	-1
1	-0.04	0	0	0
'	1	2	3	4

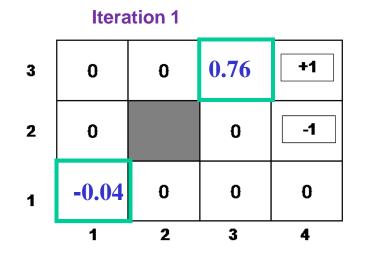
$$V^{(1)}(1,1) = -0.04 + 1 * \max \begin{bmatrix} 0.8V^{(0)}(1,2) + 0.1V^{(0)}(2,1) + 0.1V^{(0)}(1,1) & UP \\ 0.9V^{(0)}(1,1) + 0.1V^{(0)}(1,2) & LEFT \\ 0.9V^{(0)}(1,1) + 0.1V^{(0)}(2,1) & DOWN \\ 0.8V^{(0)}(2,1) + 0.1V^{(0)}(1,2) + 0.1V^{(0)}(1,1) & RIGHT \end{bmatrix}$$

$$V^{(1)}(1,1) = -0.04 + \max \begin{bmatrix} 0 & UP \\ 0 & LEFT \\ 0 & DOWN \\ 0 & RIGHT \end{bmatrix}$$

Example (cont'd) (Sorry (column, row) to indicate state)

 \triangleright Let's compute $V^{(1)}(3,3)$

Iteration 0 +1 -1



$$V^{(1)}(3,3) = -0.04 + 1* \max \begin{bmatrix} 0.8V^{(0)}(3,3) + 0.1V^{(0)}(2,3) + 0.1V^{(0)}(4,3) & UP \\ 0.8V^{(0)}(2,3) + 0.1V^{(0)}(3,3) + 0.1V^{(0)}(3,2) & LEFT \\ 0.8V^{(0)}(3,2) + 0.1V^{(0)}(2,3) + 0.1V^{(0)}(4,3) & DOWN \\ 0.8V^{(0)}(4,3) + 0.1V^{(0)}(3,3) + 0.1V^{(0)}(3,2) & RIGHT \end{bmatrix}$$

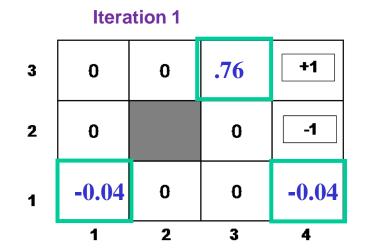
$$V^{(1)}(3,3) = -0.04 + \max \begin{bmatrix} 0.1 & UP \\ 0 & LEFT \\ 0.1 & DOWN \\ 0.8 & RIGHT \end{bmatrix}$$

Example (cont'd)

(Sorry (column, row) to indicate state)

 \triangleright Let's compute $V^{(1)}(4,1)$

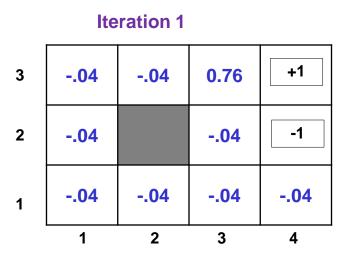
Iteration 0 +1 -1



$$V^{(1)}(4,1) = -0.04 + \max \begin{bmatrix} 0.8V^{(0)}(4,2) + 0.1V^{(0)}(3,1) + 0.1V^{(0)}(4,1) & UP \\ 0.8V^{(0)}(3,1) + 0.1V^{(0)}(4,2) + 0.1V^{(0)}(4,1) & LEFT \\ 0.9V^{(0)}(4,1) + 0.1V^{(0)}(3,1) & DOWN \\ 0.9V^{(0)}(4,1) + 0.1V^{(0)}(4,2) & RIGHT \end{bmatrix}$$

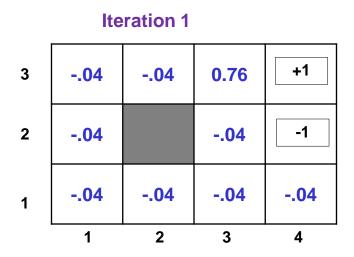
$$V^{(1)}(4,1) = -0.04 + \max \begin{bmatrix} -0.8 & UP \\ -0.1 & LEFT \\ 0 & DOWN \\ -0.1 & RIGHT \end{bmatrix}$$

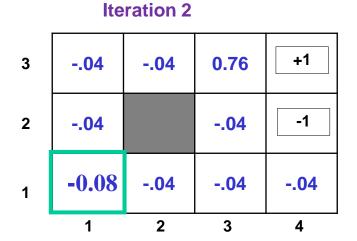
After a Full Iteration



Only the state one step away from a positive reward (3,3) has gained value, all the others are losing value

Some steps in the second iteration



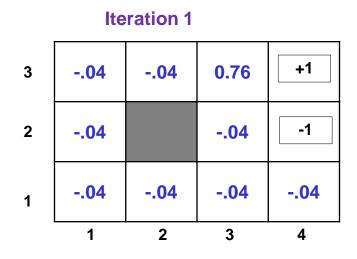


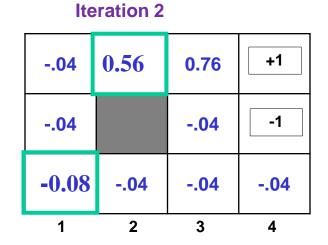
$$V^{(2)}(1,1) = -0.04 + 1* \max \begin{bmatrix} 0.8V^{(1)}(1,2) + 0.1V^{(1)}(2,1) + 0.1V^{(1)}(1,1) & UP \\ 0.9V^{(1)}(1,1) + 0.1V^{(1)}(1,2) & LEFT \\ 0.9V^{(1)}(1,1) + 0.1V^{(1)}(2,1) & DOWN \\ 0.8V^{(1)}(2,1) + 0.1V^{(1)}(1,2) + 0.1V^{(1)}(1,1) & RIGHT \end{bmatrix}$$

$$V^{(2)}(1,1) = -0.04 + \max \begin{bmatrix} -.04 & UP \\ -.04 & LEFT \\ -.04 & DOWN \\ -.04 & RIGHT \end{bmatrix} = -0.08$$

Example (cont'd)

 \triangleright Let's compute $V^{(2)}(2,3)$



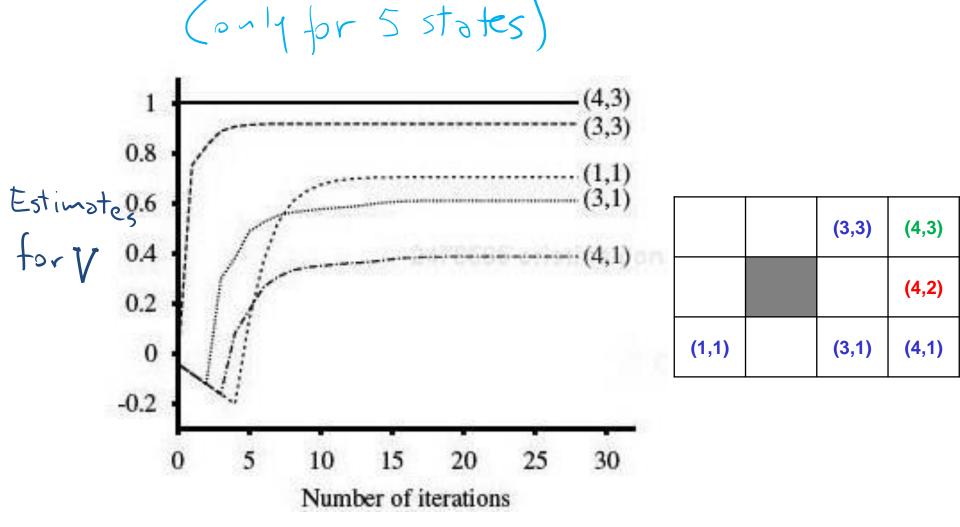


$$V^{(2)}(2,3) = -0.04 + 1* \max \begin{bmatrix} 0.8V^{(1)}(2,3) + 0.1V^{(1)}(1,3) + 0.1V^{(1)}(3,3) & UP \\ 0.8V^{(1)}(1,3) + 0.1V^{(0)}(2,3) + 0.1V^{(1)}(2,3) & LEFT \\ 0.8V^{(1)}(2,3) + 0.1V^{(1)}(1,3) + 0.1V^{(1)}(3,3) & DOWN \\ 0.8V^{(1)}(3,3) + 0.1V^{(1)}(2,3) + 0.1V^{(1)}(2,3) & RIGHT \end{bmatrix}$$

$$V^{(1)}(2,3) = -0.04 + (0.8 * 0.76 + 0.2 * -0.04) = 0.56$$

Steps two moves away from positive rewards start increasing their value

State Utilities as Function of Iteration



➤ Note that values of states at different distances from (4,3) accumulate negative rewards until a path to (4,3) is found

Value Iteration: Computational Complexity

Value iteration works by producing successive approximations of the optimal value function.

$$\forall s: \ V^{(k+1)}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V^{(k)}(s')$$

What is the complexity of each iteration?

A.
$$O(|A|^2|S|)$$

C.
$$O(|A|^2|S|^2)$$

...or faster if there is sparsity in the transition function.

Relevance to state of the art MDPs

FROM: Planning with Markov Decision Processes:
AnAI Perspective Mausam (UW), Andrey Kolobov
(MSResearch) Synthesis Lectures on Artificial
Intelligence and Machine Learning Jun 2012

Free online through UBC

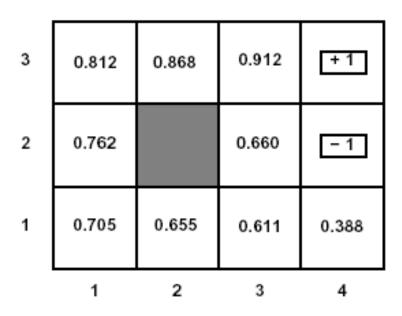
"Value Iteration (VI) forms the basis of most of the advanced MDP algorithms that we discuss in the rest of the book. ""

Lecture Overview

Markov Decision Processes

-
- Finding the Optimal Policy
 - Value Iteration
- From Values to the Policy
- Rewards and Optimal Policy

Value Iteration: from state values V to л*



➤ Now the agent can chose the action that implements the **MEU principle**: maximize the expected utility of the subsequent state

Value Iteration: from state values V to л*

Now the agent can chose the action that implements the MEU principle: maximize the expected utility of the subsequent state

$$\pi^*(s) = \underset{a}{\operatorname{arg max}} \sum_{s'} P(s'|s,a) V^{\pi^*}(s')$$
 expected value of following policy π^* in s'

states reachable from s by doing a

Probability of getting to s' from s via a

Example: from state values V to л*

$$\pi^*(s) = \underset{a}{\arg\max} \sum_{s'} P(s'|s,a) V^{\pi^*}(s') \stackrel{2}{=} 0.762 \stackrel{0.660}{=} 0.660 \stackrel{-1}{=} 1$$

> To find the best action in (1,1)

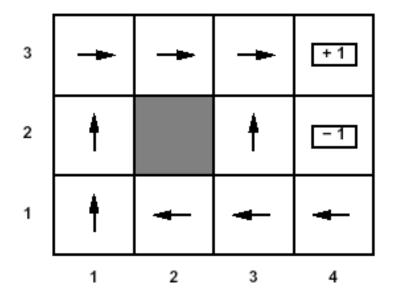
$$\pi^{*}(1,1) = \arg\max \begin{bmatrix} 0.8V(1,2) + 0.1V(2,1) + 0.1V(1,1) & UP \\ 0.9V(1,1) + 0.1V(1,2) & LEFT \\ 0.9V(1,1) + 0.1V(2,1) & DOWN \\ 0.8V(2,1) + 0.1V(1,2) + 0.1V(1,1) & RIGHT \end{bmatrix}$$

CPSC 422, Lecture 4

Slide 28

Optimal policy

➤ This is the policy that we obtain....



Learning Goals for today's class

You can:

Define/read/write/trace/debug the Value Iteration (VI) algorithm. Compute its complexity.

- Compute the Optimal Policy given the output of VI
- Explain influence of rewards on optimal policy

TODO for Mon

• Read Textbook 9.5.6 Partially Observable MDPs

Also Do Practice Ex. 9.C

http://www.aispace.org/exercises.shtml