Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 30

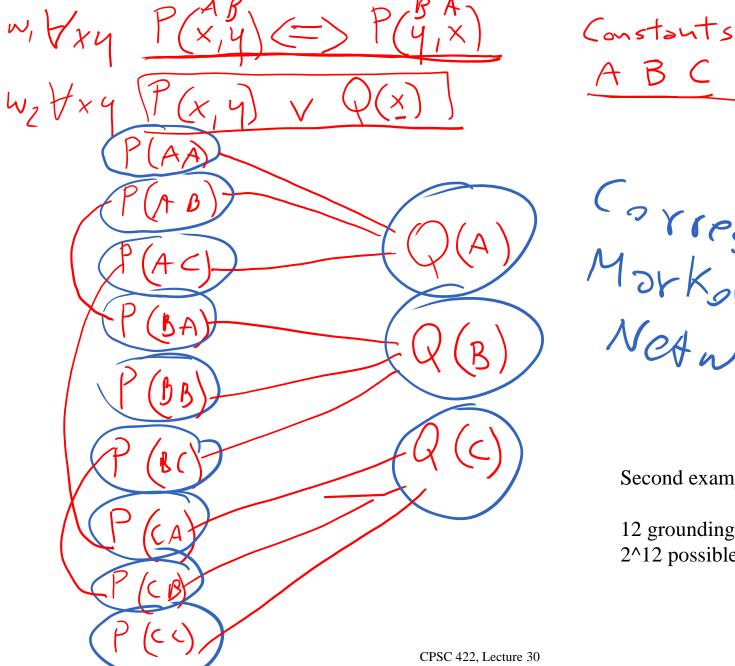
Nov. 22, 2017

Slide source: from Pedro Domingos UW & Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

Prob. Rel. Models vs. Markov Logic



Morkov Mork

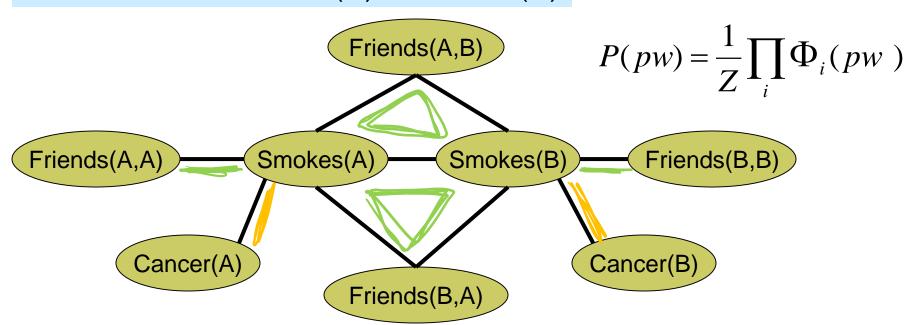
Network

Second example

12 groundings of the predicates 2^12 possible worlds / interpretations

MLN features

Two constants: **Anna** (A) and **Bob** (B)



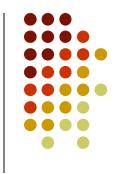
MLN: parameters

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

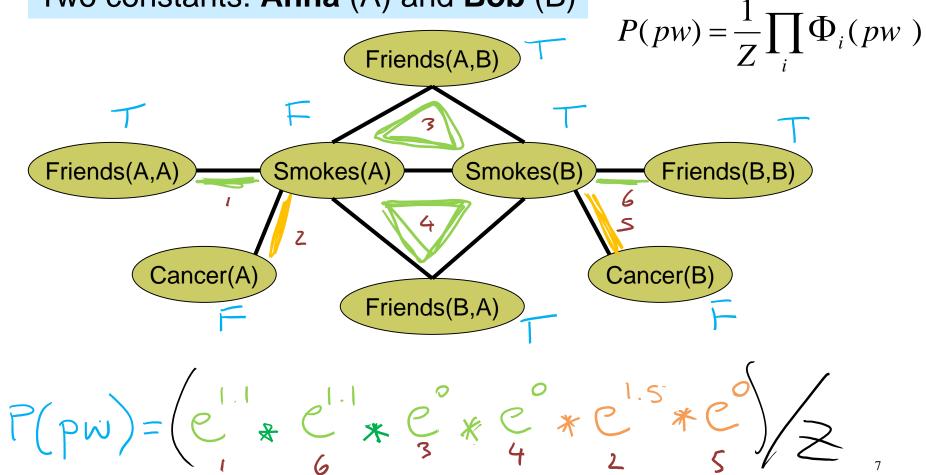
$$f(\text{Smokes}(x), \text{ Cancer}(x)) = \begin{cases} 1 & \text{if } \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \\ 0 & \text{otherwise} \end{cases}$$

MLN: prob. of possible world

- $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$ 40



Two constants: **Anna** (A) and **Bob** (B)



CPSC 422, Lecture 30

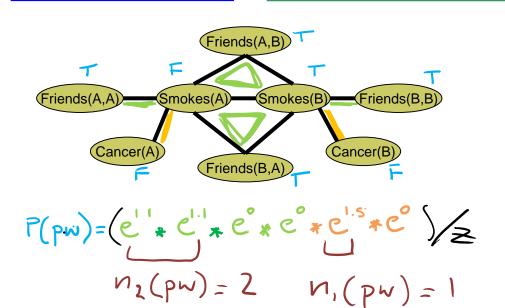
MLN: prob. Of possible world

Probability of a world pw:

$$P(pw) = \frac{1}{Z} \exp\left(\sum_{i} \frac{w_i n_i(pw)}{n_i(pw)}\right)$$

Weight of formula i

No. of true groundings of formula *i* in *pw*



Lecture Overview

- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

How MLN s generalize FOL

Consider MLN containing only one formula

$$W \forall x R(x) \Rightarrow S(x) C = \{A\}$$

$$\overline{P}(PW) = e^{W} f(PW)$$

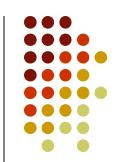
$$\overline{Z} = 1 + 3e^{W}$$

$$\overline{P}(PW) = e^{W} f(PW)$$

$$\overline{P}(PW) = e^{W} f(PW$$

 $w \to \infty, P(S(A) \mid R(A)) \to 1$ "recovering logical entailment"

How MLN s generalize FOL



First order logic (with some mild assumptions) is a special Markov Logics obtained when

- all the weight are equal
- and tend to infinity

Lecture Overview

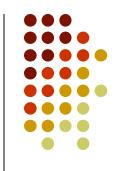
- Recap Markov Logic (Networks)
- Relation to First-Order Logics
- Inference in MLN
 - MAP Inference (most likely pw)
 - Probability of a formula, Conditional Probability

Inference in MLN

- MLN acts as a template for a Markov Network
- We can always answer prob. queries using standard Markov network inference methods on the instantiated network
- However, due to the size and complexity of the resulting network, this is often infeasible.
- Instead, we combine probabilistic methods with ideas from logical inference, including satisfiability and resolution.
- This leads to efficient methods that take full advantage of the logical structure.

MAP Inference

Problem: Find most likely state of world



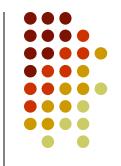
$$\underset{pw}{\operatorname{arg\,max}} P(pw)$$

Probability of a world pw:

$$P(pw) = \frac{1}{Z} \exp \left(\sum_{i} w_{i} | n_{i}(pw) \right)$$
Weight of formula *i*
No. of true groundings of formula *i* in *pw*

$$\underset{pw}{\operatorname{arg\,max}} \ \frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(pw) \right)$$

MAP Inference



$$\underset{pw}{\operatorname{arg\,max}} \ \frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(pw) \right)$$

$$\underset{pw}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(pw)$$

Are these two equivalent?

MAP Inference

 Therefore, the MAP problem in Markov logic reduces to finding the truth assignment that maximizes the sum of weights of satisfied formulas (let's assume clauses)

$$\underset{pw}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(pw)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997])

WalkSAT algorithm (in essence) (from lecture 21 - one change)

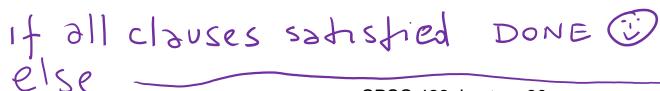
(Stochastic) Local Search Algorithms can be used for this task!

Evaluation Function *f(pw)*: number of satisfied clauses

WalkSat: One of the simplest and most effective algorithms:

Start from a randomly generated interpretation (pw)

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)
 - 1. Randomly
 - 2. To maximize # of satisfied clauses



MaxWalkSAT algorithm (in essence)

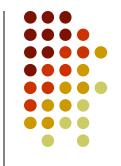
Evaluation Function $f(pw) : \sum weights(sat. clauses in pw)$

current pw <- randomly generated interpretation

Generate *new pw* by doing the following \leftarrow

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)
 - 1. Randomly
 - 2. To maximize \sum weights(sat. clauses in resulting pw)

Computing Probabilities



$$P(Formula|M_{L,C}) = ?$$

 Brute force: Sum probs. of possible worlds where formula holds

$$M_{L,C}$$
 Markov Logic Network PW_F possible worlds in which F is true $P(F \mid M_{L,C}) = \sum_{pw \in PW_F} P(pw, M_{L,C})$

MCMC: Sample worlds, check formula holds

$$S$$
 all samples S_F samples (i.e. possible worlds) in which F is true

$$P(F \mid M_{L,C}) = \frac{\mid S_F \mid}{\mid S \mid}$$

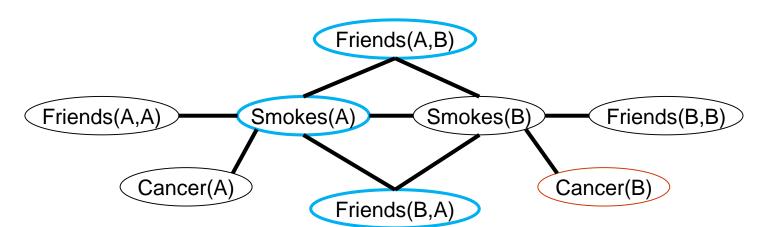
Computing Cond. Probabilities

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Let's look at the simplest case

P(ground literal | conjuction of ground literals, $M_{L,C}$)

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))



To answer this query do you need to create (ground) the whole network?

A. Yec

B.No

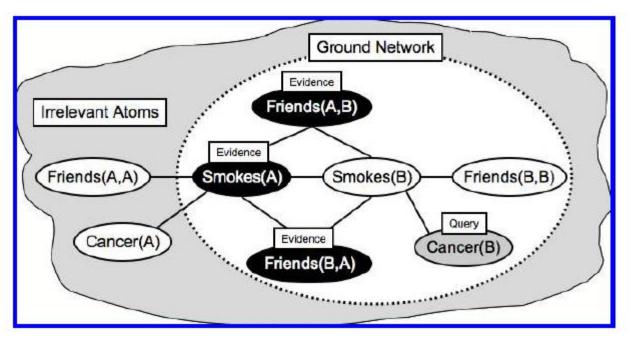
C. It depends

Computing Cond. Probabilities

Let's look at the simplest case

P(ground literal | conjuction of ground literals, M_{L,C})

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))



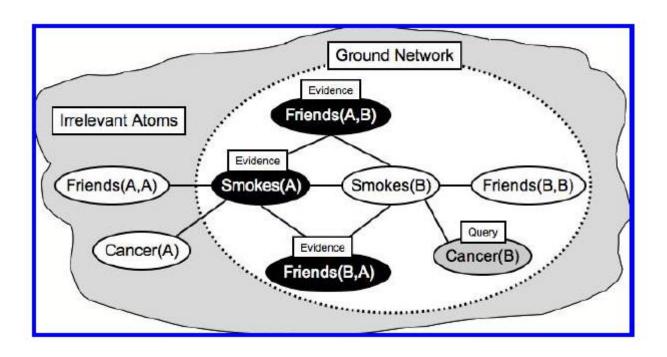
You do not need to create (ground) the part of the Markov Network from which the query is independent given the evidence

CPSC 422, Lecture 30

21

Computing Cond. Probabilities

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))



Then you can perform Gibbs Sampling in this Sub Network

Learning Goals for today's class

You can:

- Show on an example how MLNs generalize FOL
- Compute the most likely pw (given some evidence)
- Probability of a formula, Conditional Probability

Next class on Fri

- Markov Logic: applications
- · Start. Prob Relational Models

Start working on Assignment-4

Due Dec 1

In the past, a similar hw took students between 8 - 15 hours to complete. Please start working on it as soon as possible!