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Lecture Overview

Markov Decision Processes

* Formal Specification and example
* Policies and Optimal Policy

 Intro to Value Iteration
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Combining ideas for Stochastic planning
- What is a key limitation of decision networks?

Represent (and optimize) only a fixed number of
decisions

- What is an advantage of Markov models?

The network can extend indefinitely

Goal: represent (and optimize) an indefinite
sequence of decisions
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Decision Processes
Often an agent needs to go beyond a fixed set of
decisions — Examples?

* Would like to have an ongoing decision process

Infinite horizon problems: process does not stop
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Indefinite horizon problem: the agent does not know when
the process may stop
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Finite horizon/ the process must end at a give time N
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Markov Models

Markov Chains
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Rew < —I " Markov Decision
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. Hidden Markov Model

Partially Observable

Markov Decision
Processes (POMDPs)

Processes (MDPs)
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Summary Decision Processes: MDPs

To manage an ongoing (indefinite:** infinite) decision
process, we combine---.
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Example MDP: Scenario and Actions
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Agent moves in the above grid via actions Up, Down, Left, Right

Each action has:
0.8 probability to reach its intended effect
0.1 probability to move at right angles of the intended direction

If the agents bumps into a wall, it says there

How many states? /! [(/’)/éa)i ST /(Zq)/ézh}
There are two terminal states (3,4) and (2,4)
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Example MDP: Rewards
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Ris) — —0.04 (small penalty) for nonterminal statesx
Y 4 for terminal states
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Example MDP: Underlying info structures

Four actions Up, Down, Left Right
Eleven States: {(1,1), (1,2)-++--- (3,4)}
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Example MDP: Sequence of actions
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The sequence of actions [Up, Up, Right, Right, Right | will
take the agent in terminal state (3,4)---
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A. always B. never C. Only sometimes
With what probability?
A. (0.8)° B. (0.8)°+ ((0.1)* x 0.8) C. ((0.1)* x 0.8)
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Example MDP: Sequence of actions
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Can the sequence [Up, Up, Right Right Right ] take the
agent in terminal state (3,4)?

(. 3

Can the sequence reach the goal in any other way?
\\'\" ob
(D). g P Ues b
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MDPs: Policy

The robot needs to know what to do as the decision process
unfolds---

It starts in a state, selects an action, ends up in another state
selects another action---.

Needs to make the same decision over and over: Given the current
state what should I do?

So a policy for an MDPis a

single decision function J(s)
that specifies what the agent

should do for each state s 1
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How to evaluate a policy

A policy can generate a set of state sequences with different
probabilities () ?ol\‘a,] 2
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Each state sequence has a corresponding reward. Typically the
(discounted) sum of the rewards for each state in the sequence

~ -0 ~ =0k - £
(1, 1) = (1, 1} >(2 {1)~>C> 1} >[3 a) >(3z) 53, 7()

. 12

CPSC 422, Lecture 3 Slide 13



MDPs: expected value/total reward of a policy

and optimal policy
Each sequence of states (environment history) associated with a
policy has
a certain probability of occurring

a given amount of total reward as a function of the rewards of its individual
states

Expected value /total reward pcobyl;, | tFT rewsrd s
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generated by the policy (s Pmbz‘a\lm, times (Ts
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Optimal policy is the policy that maximizes expected total reward
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Lecture Overview

Markov Decision Processes

* Formal Specification and example

* Policies and Optimal Policy

 Intro to Value Iteration
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Sketch of ideas to find the optimal policy for a
MDP (Value Iteration)

We first need a couple of definitions

* V7Z(s): the expected value of following policy 7 in state s

* Q7 (s, a), where a is an action: expected value of performing
ain s, and then following policy .

Can we express Q7 (s, a) in terms of V7 (s) ?

Q7 (s, a)= \/Tr(s) +R A
Q7 (s a)= R<S> 1 E_ FCS ]glg)% \/T\zg\)\ B.

seX
Q (s a)=R(D +>_ VTES') C.
S'e X

X: set of states reachable from s by doing a
D. None of the above -
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Discounted Reward Function

» Suppose the agent goes through states s, s,,...,s, and receives
rewards ry, r,,...,r,

» We will look at discounted reward to define the reward for this
sequence, i.e. its utility for the agent

y discount factor, 0<y <1

U[s;,S,,Ss,-.] = I+ 97, +y2l’3 +.....
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Sketch of ideas to find the optimal policy for a
MDP (Value Iteration)

We first need a couple of definitions
- V7(s): the expected value of following policy 7 in state s

Q “ (s, a), where ais an action: expected value of performing
ain s, and then following policy 7.

We have, by definition T

reward
obtained in s —
states reachable || Probability Off expected value
Discount from s by doing a g(i/tit;ng 10§ A of following
factor policy 7 ins’
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Value of a policy and Optimal policy

We can also compute V 7(s)in terms of @ " (s, a)

V7(s) = Q' (s,7(s))

j action indicated by 7 in
S

Expected Expected value of performing

value of the action indicated by 7 ins

following _

T ins and following 7 after that

For the optimal policy 7% we also have
V7 (s) = Q" (s, 7*(s))
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Value of Optimal policy

V7 (s) = Q7 (s,7*(s))
Remember for any policy 7

Q" (s,7(s)) =R(s) + 7/Z P(s's,7(s))xV"(s))

But the Optimal policy 7% is the one that gives the action
that maximizes the future reward for each state

V7 (s)=R(s)+ymax 3 P(s'|s,a)xV " (s"))

Slide 20
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Value lteration Rationale

» Given N states, we can write an equation like the one below

for each of them A YA
V (sl) = R(s,)+ymax > P(s'|s;,a)V(s")

V(s,) = R(s,)+ymax D P(s'|s,,a)V(s")

v v VY
» Each equation contains N unknowns — the V values for the N states

» N equations in N variables (Bellman equations): It can be shown that they
have a unique solution: the values for the optimal policy

» Unfortunately the N equations are non-linear, because of the max
operator: Cannot be easily solved by using techniques from linear
algebra

» Value Iteration Algorithm: Iterative approach to find the optimal policy
and corresponding values
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Learning Goals for today’ s class

You can:

Compute the probability distribution on states given a
sequence of actions in an MDP

Define a policy for an MDP
Define and Justify a discounted reward function

Derive the Bellman equations on which Value Iteration
IS based (we will likely finish this in the next lecture)
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TODO for Fri

Read textbook
e 90.5.3 Value Iteration
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