Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 21

Oct, 30, 2017

Slide credit: some slides adapted from Stuart Russell (Berkeley), some from Prof. Carla PGomes (Cornell)

David Buchman and Professor David Poole are the recipients of the **UAI 2017**

Best Student Paper Award, "Why Rules are Complex: Real-Valued Probabilistic Logic Programs are not Fully Expressive". This paper proves some surprising results about what can and what cannot be represented by a popular method that combines logic and probability. Such models are important as they let us go beyond features in machine learning to reason about objects and relationships with uncertainty.

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Start Encoding Example

Proof by resolution

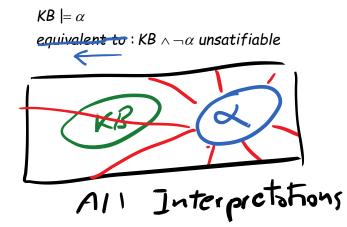
KB |= α
equivalent to: KB \ ¬α unsatifiable

Models of KB

Models of A

Models of A

All Interpretations



Key ideas

 $KB = \alpha$

equivalent to : KB $\land \neg \alpha$ unsatifiable

- Simple Representation for $KB \wedge \neg \alpha$ Form
- Simple Rule of Derivation

Resolution

Conjunctive Normal Form (CNF)

Rewrite $KB \land \neg \alpha$ into conjunction of disjunctions

Any KB can be converted into CNF!

Example: Conversion to CNF

$$A \Leftrightarrow (B \vee C)$$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(A \Rightarrow (B \lor C)) \land ((B \lor C) \Rightarrow A)$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A)$
- 3. Using de Morgan's rule replace $\neg(\alpha \lor \beta)$ with $(\neg \alpha \land \neg \beta)$: $(\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A)$
- 4. Apply distributive law (∨ over ∧) and flatten: (¬A ∨ B ∨ C) ∧ (¬B ∨ A) ∧ (¬C ∨ A)

Example: Conversion to CNF

$$A \Leftrightarrow (B \vee C)$$

5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:

...

$$(\neg A \lor B \lor C)$$

$$(\neg B \lor A)$$

$$(\neg C \lor A)$$

- - -

Full Propositional Logics

DEFs.

Literal: an atom or a negation of an atom

Clause: is a disjunction of literals $p \lor 7 \checkmark \checkmark q$

Conjunctive Normal Form (CNF): a conjunction of clauses

KBEXX formula (P) 1 (qv7r) 1 (7qvp)

- Convert all formulas in KB and in CNF
- Apply Resolution Procedure

Resolution Deduction step

Resolution: inference rule for CNF: sound and complete! *

$$(A \vee B \vee C)$$

 $(\neg A)$

"If A or B or C is true, but not A, then B or C must be true."

$$\therefore (B \vee C)$$

$$(A \vee B \vee C)$$

$$(\neg A \lor D \lor E)$$

$$\therefore (B \vee C \vee D \vee E)$$

"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true."

$$(A \vee B)$$

$$(\neg A \lor B)$$

_ _ _ _ _ _ _

$$\therefore (B \vee B) \equiv B$$

Simplification

Resolution Algorithm

but this is equivalent

- The resolution algorithm tries to prove: KB =
- $KB \land \neg \alpha$ is converted in CNF
- Resolution is applied to each pair of clauses with complementary literals
- Resulting clauses are added to the set (if not already there)
- Process continues until one of two things can happen:
- 2. No new clauses can be added: We find no contradiction, there is a model that satisfies the sentence and hence we cannot entail the query.

CPSC 422, Lecture 2

Resolution example

$$KB = (A \Leftrightarrow (B \lor C)) \land \neg A$$

$$\alpha = \neg B$$

$$KB \land \neg \alpha$$

$$TA \lor B \lor C \lor TB \lor A$$

$$True!$$

$$False in all worlds$$

Resolution algorithm

Proof by contradiction, i.e., show $KB \wedge \neg \alpha$ unsatisfiable

```
function PL-Resolution (KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
             \alpha, the query,
   clauses \leftarrow the set of clauses in the CNF representation of KB \wedge \neg \alpha
   new \leftarrow \{ \}
   loop do
        for each C_i, C_i in clauses do
             resolvents \leftarrow PL-Resolve(C_i, C_i)
             if resolvents contains the empty clause then return true
             new \leftarrow new \cup resolvents
        if new ⊆ clauses then return false ; no new clauses were created
        clauses \leftarrow clauses \cup new
```

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Hardness of SAT
- Start Encoding Example

Satisfiability problems

Consider a CNF sentence, e.g.,

$$(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E)$$

$$\land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$$

Is there an interpretation in which this sentence is true (i.e., that is a model of this sentence)?

Many **combinatorial problems** can be reduced to checking the satisfiability of propositional sentences (example later)— and returning the model

How can we solve a SAT problem?

Consider a CNF sentence, e.g.,

$$(\neg D \lor \neg B \lor C) \land (A \lor C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$$

Each clause can be seen as a constraint that reduces the number of interpretations that can be models

 $Eg(A \lor C)$ eliminates interpretations in which A=F and C=F

So SAT is a **Constraint Satisfaction Problem**: Find a possible world that is satisfying all the constraints (here all the clauses)

WalkSAT algorithm

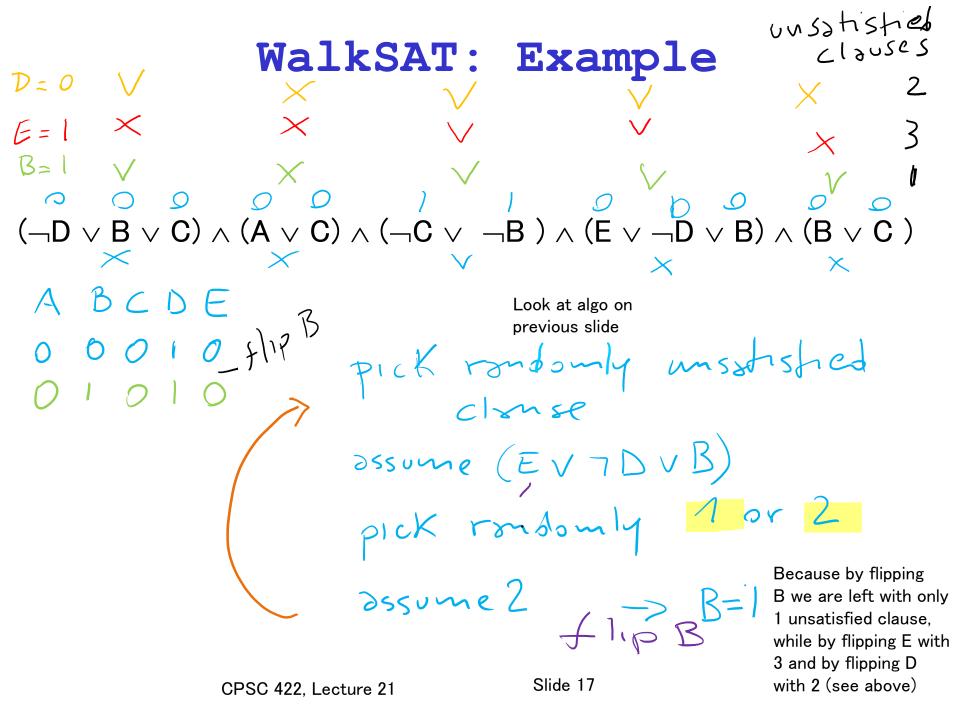
(Stochastic) Local Search Algorithms can be used for this task!

Evaluation Function: number of unsatisfied clauses

WalkSat: One of the simplest and most effective algorithms:

Start from a randomly generated interpretation

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)
 - 1. Randomly
 - 2. To minimize # of unsatisfied clauses



Pseudocode for WalkSAT

```
function WALKSAT(clauses, p, max-flips) returns a satisfying model or failure
   inputs: clauses, a set of clauses in propositional logic
            p, the probability of choosing to do a "random walk" move
            max-flips, number of flips allowed before giving up
     pw \leftarrow a random assignment of true/false to the symbols in clauses
   for i = 1 to max-flips do
       if pw satisfies clauses then return
        clause \leftarrow a randomly selected clause from clauses that is false in
       with probability p flip the value in p_W of a randomly selected symbol
              from clause
      else flip whichever symbol in clause maximizes the number of satisfied clauses
  return failure
```

pw = possible world / interpretation

The WalkSAT algorithm

If it returns failure after it tries *max-flips* times, what can we say?

A. The sentence is unsatisfiable

- B. Nothing
- C. The sentence is satisfiable

Typically most useful when we expect a solution to exist

Hard satisfiability problems

Consider random 3-CNF sentences. e.g.,

$$(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$$

m = number of clauses (5)

n = number of symbols (5)

- Under constrained problems:
 - ✓ Relatively few clauses constraining the variables
 - ✓ Tend to be easy
 - E.g. For the above problem16 of 32 possible assignments are solutions
 - (so 2 random guesses will work on average)

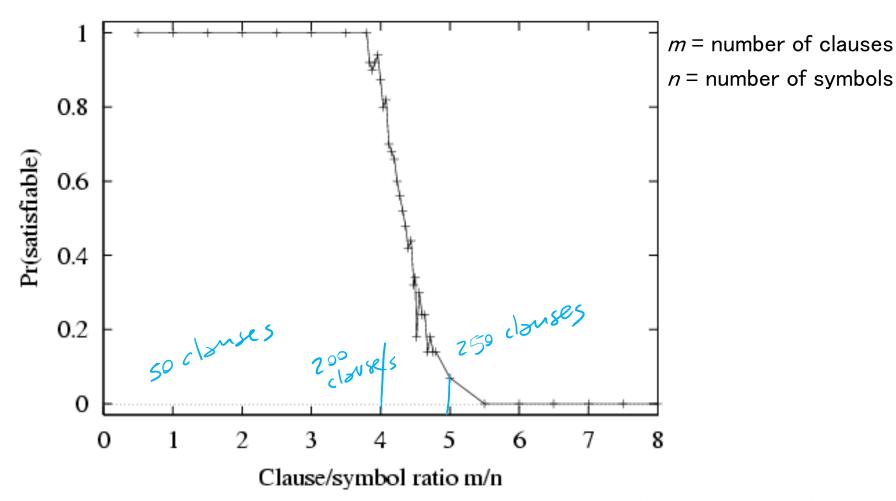
Hard satisfiability problems

What makes a problem hard?

- Increase the number of clauses while keeping the number of symbols fixed
- Problem is more constrained, fewer solutions

You can investigate this experimentally....

P(satisfiable) for random 3-CNF sentences, n = 50



Hard problems seem to cluster near m/n = 4.3 (critical point)

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Start Encoding Example

Encoding the Latin Square Problem in Propositional Logic

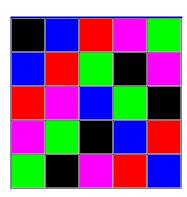
In combinatorics and in experimental design, a Latin square is

- an n × n array
- filled with n different symbols,
- each occurring exactly once in each row and exactly once in each column.

Here is an example:

A	В	С
С	A	В
В	С	A

Here is another one:



Encoding Latin Square in Propositional Logic: Propositions

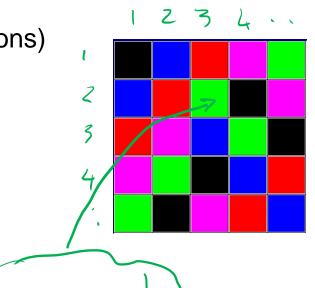
Variables must be binary! (They must be propositions) Each variables represents a color assigned to a cell. Assume colors are encoded as integers

$$x_{ijk} \in \{0,1\}$$

Assuming colors are encoded as follows (black, 1) (red, 2) (blue, 3) (green, 4) (purple, 5)

 x_{233} True or false, ie. 1 or 0 with respect to the interpretation represented by the picture?

How many vars/propositions overall?



Encoding Latin Square in Propositional Logic: Clauses

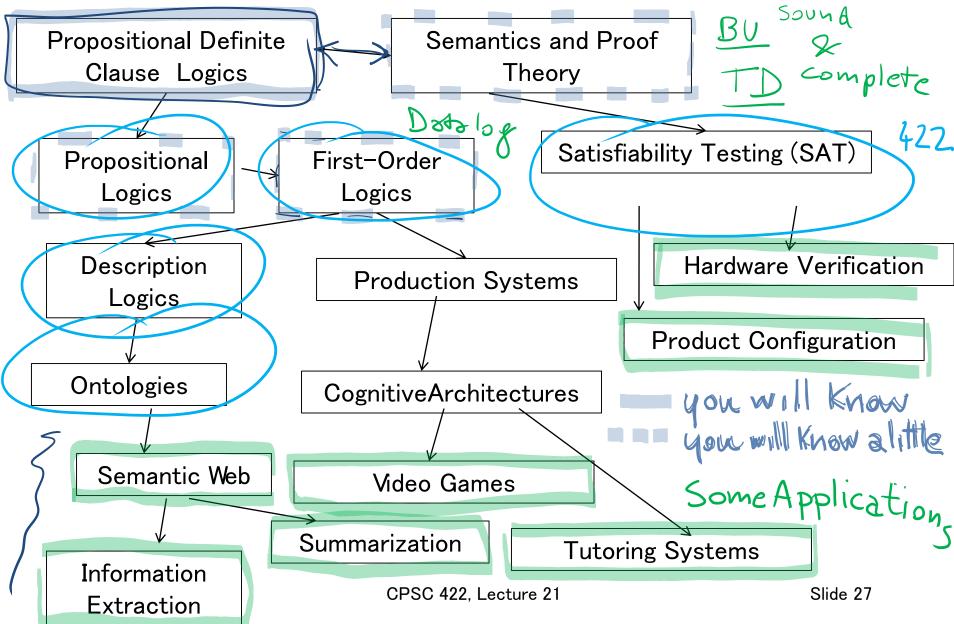
• Some color must be assigned to each cell (clause of length n); iclicker.

• No color is repeated in the same row (sets of negative binary clauses);

$$\forall_{ik} (\neg x_{i1k} \lor \neg x_{i2k}) \land (\neg x_{i1k} \lor \neg x_{i3k}) \dots (\neg x_{i1k} \lor \neg x_{ink}) \dots (\neg x_{ink} \lor \neg x_{i(n-1)k})$$

How many clauses?

Logics in AI: Similar slide to the one for planning



Relationships between different Logics

(better with colors)

$$\forall X \exists Y p(X, Y) \Leftrightarrow \forall q(Y)$$

$$p(\partial_1, \partial_2)$$

$$7(p \vee q) \longrightarrow (r \wedge s \wedge f)$$

Datalog

$$p(X) \leftarrow q(X) \wedge r(X,Y)$$

 $r(X,Y) \leftarrow S(Y)$

PDCL

 $S(\partial_1), Q(\partial_2)$

$$P \leftarrow S \wedge f$$
 $r \leftarrow S \wedge g \wedge P$
 r

Learning Goals for today's class

You can:

- Specify, Trace and Debug the resolution proof procedure for propositional logics
- Specify, Trace and Debug WalkSat
- Encode the Latin square problem in propositional logics (basic ideas)

Next class Wed

- First Order Logic
- Extensions of FOL

Assignment-3 will be posted on Wed!