Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 20

Oct, 27, 2017

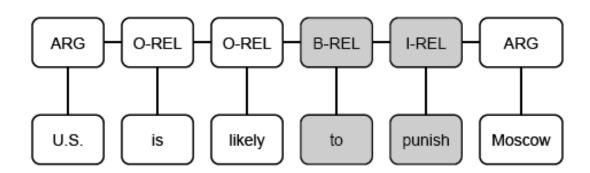
Slide credit: some slides adapted from Stuart Russell (Berkeley), some from Padhraic Smyth (UCIrvine)

PhD thesis I was reviewing two years ago... University of Alberta EXTRACTING INFORMATION NETWORKS FROM TEXT

We model *predicate detection* as a sequence labeling problem — We adopt the BIO encoding, a widely-used technique in NLP.

Our method, called Meta-CRF, is based on Conditional Random Fields (CRF).

CRF is a graphical model that estimates a conditional probability distribution, denoted p(yjx), over label sequence y given the token sequence x.



422 big picture: Where are we?

StarAI (statistical relational AI)

Hybrid: Det +Sto
Prob CFG
Prob Relational Models
Markov Logics

Deterministic

Stochastic

Query

Planning

Logics First Order Logics

Ontologies Temporal rep.

- Full Resolution
- SAT

Belief Nets

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Markov Decision Processes and Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of AI

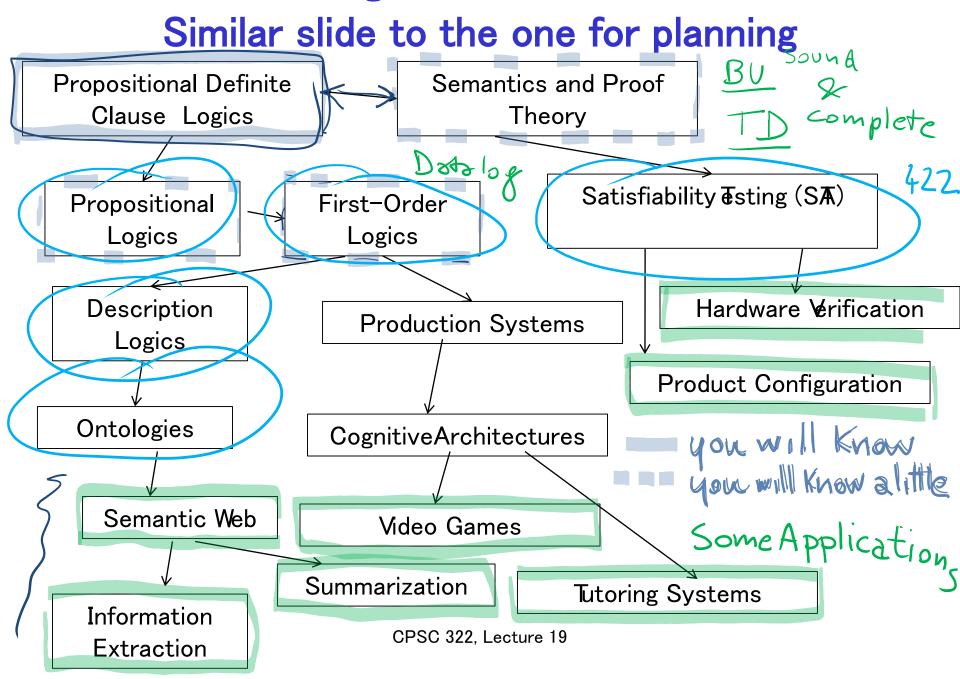
Representation

Reasoning Technique

CPSC 322. Lecture 34

Slide 3

Logics in AI (322):



Relationships between different Logics

(better with colors)

$$\forall X \exists Y p(X,Y) \Leftrightarrow \forall q(Y)$$

$$p(\partial_1,\partial_2)$$

$$7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$$

Datalog

$$p(X) \leftarrow q(X) \wedge r(X,Y)$$

 $r(X,Y) \leftarrow S(Y)$

PDCL

 $S(\partial_1), Q(\partial_2)$

Lecture Overview

- Basics Recap: Interpretation / Model /...
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements cont'): Aknowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

PDC Semantics: Knowledge Base (KB)

 A knowledge base KB is true in I if and only if every clause in KB is true in I.

	р	q	r	S
I ₁	true	true	false	false

Which of the three KB below is *true* in I_1 ?

B p q $s \leftarrow q$

 $p \\ q \leftarrow r \wedge s$

PDC Semantics: Knowledge Base (KB)

 A knowledge base KB is true in I if and only if every clause in KB is true in I.

	р	q	r	S
I ₁	true	true	false	false

Which of the three KB above is True in I_1 ? KB_3

Basic definitions from 322 (Semantics)

Definition (interpretation)

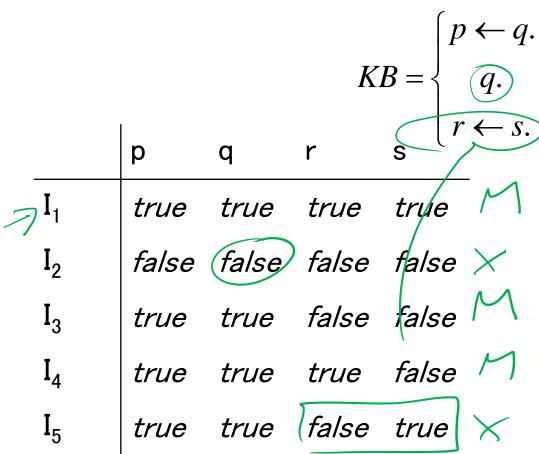
An interpretation I assigns a truth value to each atom.

Definition (truth values of statements cont'): A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Definition (model)

A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Example: Models



Which interpretations are models?

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements cont'): Aknowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

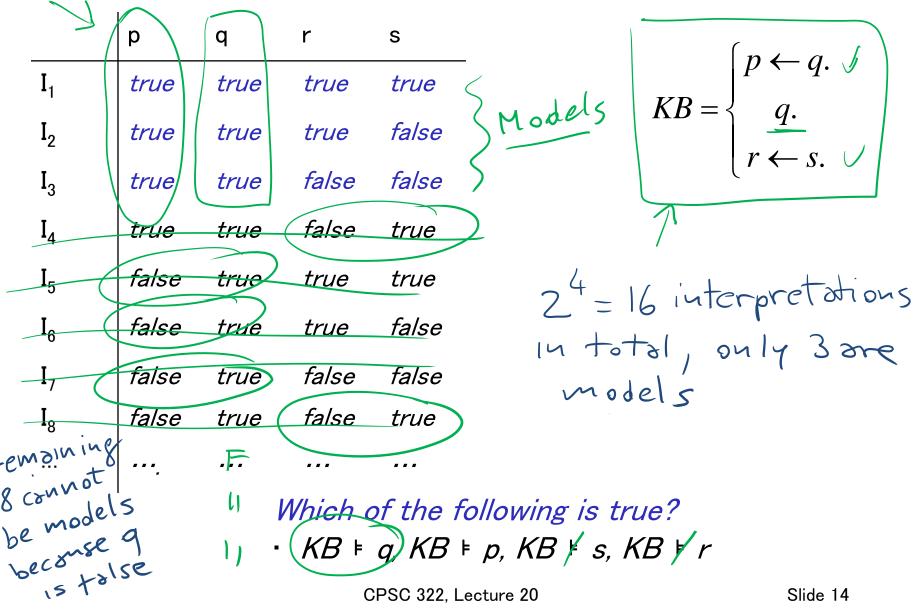
Definition (model)

Amodel of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If KB is a set of clauses and G is a conjunction of atoms, G is a logical consequence of KB, written KB
otin G, if G is true in every model of KB.

Example: Logical Consequences

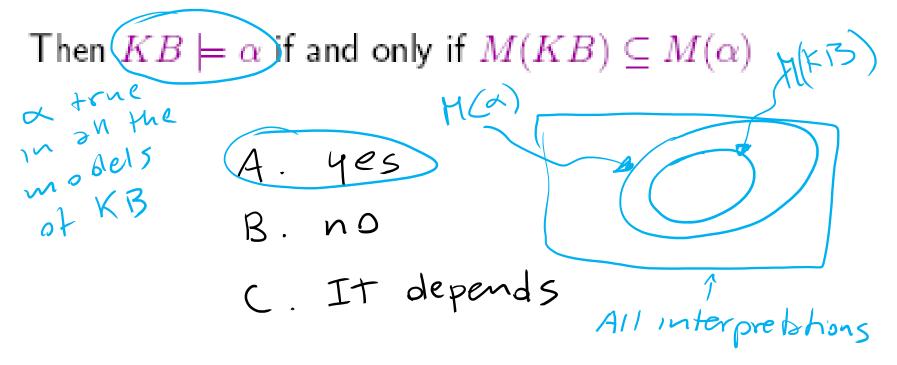


i¤clicker.

Is it true that if

M(KB) is the set of all models of KB

 $M(\alpha)$ is the set of all models of α



Basic definitions from 322 (Proof Theory)

Definition (soundness)

A proof procedure is sound if KB + G implies KB + G.

Definition (completeness)

A proof procedure is complete if $KB \models G$ implies $KB \vdash G$.

Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Relationships between different Logics

(better with colors)

$$\forall X \exists Y p(X,Y) \Leftrightarrow \forall q(Y)$$

$$p(\partial_1,\partial_2)$$

$$-q(\partial_5)$$

$$7(p \vee q) \longrightarrow (r \wedge s \wedge f)$$

Datalog

$$P(X) \leftarrow q(X) \wedge r(X,Y)$$

 $r(X,Y) \leftarrow S(Y)$
 $S(\partial_1), q(\partial_2)$

PDCL

$$P \leftarrow S \wedge f$$
 $r \leftarrow S \wedge g \wedge p$

Propositional logic: Syntax

Atomic sentences = single proposition symbols

- E.g., P, Q, R
- Special cases: True = always true, False = always false

Complex sentences:

- If S is a sentence, ¬S is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each interpretation specifies true or false for each proposition symbol

E.g. q false true

Rules for evaluating truth with respect to an interpretation I:

is true iff S is false

 $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true

 $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true

 $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true S_1 is true and S_2 is false is false iff

 $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $(\neg p \land (q \lor r)) \Leftrightarrow \neg p = (\neg f \land (T \lor f)) \Leftrightarrow \neg f \qquad (T \land T) \Leftrightarrow T$ CPSC 322, Lecture 19

Logical equivalence

Two sentences are logically equivalent iff true in same interpretations $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$ they have the same models

Can be used to rewrite formulas....

$$(p \Rightarrow 7(q \wedge r)) \rightarrow 7PV7qV \rightarrow r$$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \wedge \quad (\rho \Rightarrow 7 \text{ (q \land r})) = \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \qquad (\rho \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \text{ over }$$

can be used to rewrite formulas....

$$(P \Rightarrow 7 (9 \land r))$$
 $(9 \land r) \Rightarrow 7P$
 $(9 \land r) \Rightarrow 7P$
 $(9 \land r) \Rightarrow 7P$

Validity and satisfiability

A sentence is valid if it is true in all interpretations

e.g.,
$$True$$
, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:

$$KB \models \alpha$$
 if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some interpretation e.g., $A \vee B$, C

A sentence is unsatisfiable if it is true in no interpretations e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha \text{ if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable}$ i.e., prove α by reductio ad absurdum

Validity and Satisfiability

i clicker.

(d is valid iff id unsatisfiable)

The statements above are:

A: All tolse

B: Some true Some tolse

C: All true

Validity and Satisfiability (x is valid iff (70) unsatisfiable) T Lot 15 satisfiable Iff Id 15/valid > F true in some models Ltrue in all models The statements above are: A: All tolse B: Some true Some tolse

CPSC 322, Lecture 19

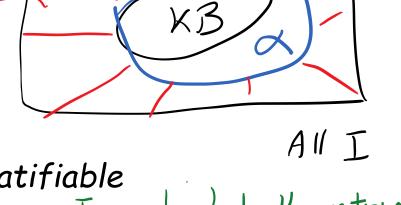
Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Proof by resolution

Key ideas

eas
$$KB \models \alpha$$



equivalent to : KB $\wedge \neg \alpha$ unsatifiable

(there is no I in which both are true)

- Representation for Conjunctive Normal Rule of Derivation Simple
- Simple Rule of Derivation

Resolution

Conjunctive Normal Form (CNF)

Rewrite $KB \land \neg \alpha$ into conjunction of disjunctions

Any KB can be converted into CNF!

Example: Conversion to CNF

$$A \Leftrightarrow (B \vee C)$$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(A \Rightarrow (B \lor C)) \land ((B \lor C) \Rightarrow A)$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A)$
- 3. Using de Morgan's rule replace $\neg(\alpha \lor \beta)$ with $(\neg \alpha \land \neg \beta)$: $(\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A)$
- 4. Apply distributive law (∨ over ∧) and flatten: (¬A ∨ B ∨ C) ∧ (¬B ∨ A) ∧ (¬C ∨ A)

Example: Conversion to CNF

$$A \Leftrightarrow (B \lor C)$$

5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:

```
(¬A ∨ B ∨ C)
(¬B ∨ A)
(¬C ∨ A)
```

Resolution Deduction step

Resolution: inference rule for CNF: sound and complete! *

$$(A \vee B \vee C)$$

 $(\neg A)$

"If A or B or C is true, but not A, then B or C must be true."

$$\therefore (B \vee C)$$

$$(A \vee B \vee C)$$

$$(\neg A \lor D \lor E)$$

$$\therefore (B \vee C \vee D \vee E)$$

"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true."

$$(A \vee B)$$

$$(\neg A \lor B)$$

$$\therefore (B \vee B) \equiv B$$

Simplification

CPSC 322, Lecture 19

Learning Goals for today's class

You can:

- Describe relationships between different logics
- Apply the definitions of Interpretation, model, logical entailment, soundness and completeness
- Define and apply satisfiability and validity
- Convert any formula to CNF
- Justify and apply the resolution step

Next class Mon

Finish Resolution

Another proof method for Prop. Logic
 Model checking – Searching through truth assignments. Walksat.

First Order Logics