Intelligent Systems (Al-2)
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Announcements

Assignment0 / Survey results

— Discussion on Piazza — 90%
—  (sign up piazza.com/ubc.ca/winterterm12016/cpsc422)

— 40% took 322 more than a year ago -+ so make sure you
revise 322 material

Office Hours (see next)

What to do with readings? In a few lectures we will
discuss the first research paper. Instructions on what to
do are available on the course webpage.
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Office Hours

Instructor
Giuseppe Carenini ( carenini@cs.ubc.ca; office CICSR 105)
Natural Language Processing, Summarization, Preference Elicitation,

Explanation, Adaptive Visualization, Intelligent Interfaces------
Office hour: my office, Mon 10-11

Teaching Assistant
Jordon Johnson jordon@cs.ubc.ca

Office hour: ICCS X237, for Mon 1-2

Emily Chen emily—404@hotmail.com
Office hour: ICCS X237, for Thurs. 12—1

2%

Enamul Hoque Prince enamul.hoque.prince@gmail.co

(no office hours — marking only)
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mailto:enamul.hoque.prince@gmail.co

Conference (program co—chair)

ikl By 17th Annual SIGdial Meeting on Discourse and Dialogue MM p 4: Xerox e \ intel)
Wil 7 Los Angeles, USA, September 13-15, 2016 mu Microsoft e (<

w %b ETS)
. n ‘ facebook a@g;on alexa gcxgg

Erlﬂj@il YAHOO ’ @interactions

Four papers using
(PO)MDP & Reinforcement Learning!
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Lecture Overview

Markov Decision Processes

e Some ideas and notation
 Finding the Optimal Policy
e Value Iteration

* From Values to the Policy
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Example MDP: Scenario and Actions
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Agent moves in the above grid via actions Up, Down, Left, Right
Each action has:

80

0.8 probability to reach its intended effect

0.1 probability to move at right angles of the intended direction
If the agents bumps into a wall, it says there

Eleven states

Two terminal states (3,4) and (2,4)
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Example MDP: Rewards
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Ris) — —0.04 (small penalty) for nonterminal statesx
Y 4 for terminal states
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MDPs: Policy

The robot needs to know what to do as the decision process
unfolds---

It starts in a state, selects an action, ends up in another state
selects another action---.

Needs to make the same decision over and over: Given the current
state what should I do?

So a policy for an MDPis a
single decision function 7()
that specifies what the agent
should do for each state s
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Sketch of ideas to find the optimal policy for a
MDP (Value Iteration)

We first need a couple of definitions
-V "(s): the expected value of following policy 7 in state s

Q "(s, a), where ais an action: expected value of performing
ain s, and then following policy 7.

We have, by definition T

reward
obtained in s —
states reachable || Probability Off expected value
Discount from s by doing a g(i/tit;ng 10§ A of following
factor policy 7 ins’
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Value of a policy and Optimal policy

We can also compute V 7(s)in terms of @ " (s, a)

V7(s) = Q' (s,7(s))

j action indicated by 7 in
S

Expected Expected value of performing

value of the action indicated by 7 ins

following _

T ins and following 7 after that

For the optimal policy 7 * we also have
V7 (s) = Q" (s, 7*(s))
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Value of Optimal policy

V7 (s) = Q" (s,7*(s))
Remember for any policy 7

Q" (s,7(s)) =R(s) + 72 P(s']'s,7(s))xV"(s))

But the Optimal policy 7 * is the one that gives the action
that maximizes the future reward for each state

V7 (s)=R(s)+ymax 3 P(s'|s,a)xV " (s"))

Slide 12
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Value lteration Rationale

» Given N states, we can write an equation like the one below

for each of them YA
V(s,) = R(s))+ymax > P(s'|s,a)V(s")

V(s,) = R(s,)+ymax D P(s'|s,,a)V(s")

N

» Each equation contains N unknowns — the V values for the N states

» N equations in N variables (Bellman equations): It can be shown that they
have a unique solution: the values for the optimal policy

» Unfortunately the N equations are non-linear, because of the max
operator: Cannot be easily solved by using techniques from linear
algebra

» Value Iteration Algorithm: Iterative approach to find the V values and
the corresponding

] ] CPSC 422, Lecture 4 Slide 14
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Value lteration in Practice

> Let VO)(s) be the utility of state s at the i'" iteration of the
algorithm

> Start with arbitrary utilities on each state s: VO)(s)

» Repeat simultaneously for every s until there is “no change”

VD (s) = R(s)+ymax D P(s']s,a)V ¥ (s")

» True “no change” in the values of V(s) from one iteration to
the next are guaranteed only if run for infinitely long.

In the limit, this process converges to a unique set of solutions for the
Bellman equations

« They are the total expected rewards (utilities) for the optimal policy
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oY (ao\wvx " mw}

S
Example C o 1w dX et S |
« Suppose, for instance, that we start with values V©)(s) that are

a” O Iteration O Iteration 1
3 0 0 0 +1 3 0 0 0 +1
2 0 -1 2 0 1
&Eo | o | o | o ] o | o
2 3 4 1 2 3 4

|
I
V.
B 0.8V ©12)+0.V@(21)+0vO@1) UP
0.9V O 1D +0.2v@(12) LEFT
0.9V @@L +0.2v@(2,1) DOWN
108v@2D)+0.v@(12)+0.v P (L)  RIGHT |

V®(11) = —-0.04+1* max

UP
LEFT
DOWN
RIGHT Slide 17

vV ®(11) = -0.04 + max

o O O o
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S
Example (cont’d) C Tovwdaexte S{I’&Q)
> Let’'s compute V®)(3,3)

Iteration O Iteration 1
3 0 0 0 +1 3 0 o |0.76 +
2 0 0 1 2 0 0 -1
1 0 0 0 0 1 | 004 o 0 0
1 2 3 4 1 2 3 4

0.8V ©(3,3)+0.1V©?(23)+0.V©(4,3)  UP
0.8V ?(2,3)+0.v@(33)+0.1v?(3,2)  LEFT
0.8V ©@(3,2)+0.v@(23)+0.1v?(4,3) DOWN
0.8V ©@(4,3)+0.V©(33)+0.V?(3,2)  RIGHT

V®(3.3) = -0.04+1* max

(01 UP ]
0 LEFT
V ®(3,3) = -0.04 + max
0.1 DOWN
0.8 RIGHT Slide 18
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Example (cont’d)

> Let's compute V(1(4,1)

Iteration O
3 0 0 0 +1
2 0 0 1
1 0 0 0 0
1 2 3 4

V@ (4,1) =-0.04+ max

V ®(4,1) = -0.04+ max
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[-0.8
-0.1
0

-0.1

(s

oY (ao\wvx " mw}

0.8V ©(4,2)+0.V P31 +0.vV @41  UP
0.8v?P3B1D+01v?P4,2)+01v @41  LEFT
0.9V @ (4,1 +0.1v©(3,2)

0.9V ©(41)+0.2v©(4,2)

Towmdaexte s
lteration 1
3 0 0 .76 +1
2 0 -1
1 0 '004
1 2 3 4
DOWN
MGHT_
UP
LEFT
DOWN
RIGHT Slide 19
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After a Full lteration

lteration 1

3 -.04 -.04 0.76 +1

-.04 -1

-.04 -.04 -.04 -.04

1 2 3 4

» Only the state one step away from a positive reward (3,3) has gained
value, all the others are losing value
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Some steps in the second iteration

lteration 1 Iteration 2
3 .04 | -0a | 076 +1 3 -04 | -04 | 0.76 1
2 -.04 1 2 -.04 1
. | 04 | -04 | -04 | -04 1 -04 | -.04
1 2 3 4 1 2 3 4

0.8VP(12)+0.vP(21)+0.vP@L1)  UP

- 0.9vP (LD +0.2v®(1,2) LEFT
V@ (11) = -0.04+1*max
0.9v®(11)+0.2v P (2,1 DOWN
108v®(2)+0vP(1,2)+0vP (L)  RIGHT
[-.04 Up |
-.04 LEFT
V@ (1,1) = -0.04 + max =-0.08
-.04 DOWN
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Example (cont’d)
> Let’'s compute V®)(2,3)

lteration 1

lteration 2

-04 1 0.56 0.76 +1

3 -.04 -.04 0.76 1

-.04 -.04 -1

-0.08] -.04 -.04 -.04

0.8V ©(23)+0.VO13)+0.V©@(33)  UP
0.8V P(1,3)+0.1v@(23)+0..v?(2,3)  LEFT
0.8v©(2,3)+0..v @ (1,3) +0.1v?(33) DOWN
0.8V ©@(33)+0.v?(23)+0.v?(2,3)  RIGHT

V®(2,3) = -0.04+1*max

V®(2,3) =-0.04+(0.8%0.76+0.2%—-0.04) = 0.56

» Steps two moves away from positive rewards start increasing

their value
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State Utlilities as Function of lteration #

CO” '\ %or 5 STaJrCSB

Est iMa+Q(S).6

0 5 10 15 20 25 30
Number of iterations

» Note that values of states at different distances from (4,3)
accumulate negative rewards until a path to (4,3) is found
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3.1)

(4.1)
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Value lteration: Computational

Complexity

Value iteration works by producing successive
approximations of the optimal value function.

Vs: VHD(s) = R(S)+ymax » P(s'|s,a)V¥(s")

What is the complexity of each iteration?
A O(ARIS) (B O(AIISP)) \C. O(AFISE)

...or faster if there is sparsity in the transition function.
SV\AB” SQTS
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Relevance to state of the art MDPs

FROM : Planning with Markov Decision Processes:
An Al Perspective Mausam (UW),Andrey Kolobov

(MSResearch) Synthesis Lectures onArtificial
Intelligence and Machine Learning Jun 2012

Free online through UBC %

Atificial Intelligence
and Machine Learning

“ Value Iteration (VI) forms the basis of most of the

advanced MDP algorithms that we discuss in the rest
of the book. =----- L

CPSC 422, Lecture 4 Slide 26


http://www.morganclaypool.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield:(Mausam)
http://www.morganclaypool.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield:(Kolobov,+A)
http://www.morganclaypool.com/loi/aim

Lecture Overview

Markov Decision Processes

 Finding the Optimal Policy
 Value Iteration

* From Values to the Policy
e Rewards and Optimal Policy
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Value Iteration: from state values V to /7 *

3 0.812 0.868 0.912 1

2 0.762 0.660 -1

» Now the agent can chose the action that implements the
MEU principle: maximize the expected utility of the
subsequent state
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Value Iteration: from state values V to /7 *

» Now the agent can chose the action that implements the
MEU principle: maximize the expected utility of the
subsequent state

\ = ray | €Xpected value
z*(s) = argmax > P(s'|s,a)V (S% of fpollowing
a s'

J policy n*in s’
states reachable /
P

from s by doing a robability of getting to s’ from s via a
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Example: from state values V to /7%

z*(s) = argmax » P(s'|s,a)V" (s') ’

» To find the best action in (1,1)

7*(1,1) = arg max

. 362 . 685 305

0.8V Zl 25|+O ]&YL(Z_'%HO AV (@1

0.9 (1 1)§+ 0.1V (L2),
0.9V (L1)+0. mfj

0.8V (2,1) +0.1V (1,2) + 0.1V (11)
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Optimal policy

» This is the policy that we obtain....

2 |4 } | &
1 * . ~l— .
1 2 3 Fi
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Learning Goals for today’ s class

You can:

Define/read/write/trace/debug the Value Iteration (VI)
algorithm. Compute its complexity.

Compute the Optimal Policy given the output of VI
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TODO for Mon

e Read Textbook 9.5.6 Partially Observable MDPs

*Also Do Practice Ex. 9.C

http://www.aispace.org/exercises.shtml
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