Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 30

Nov, 23, 2015

Slide source: from Pedro Domingos UW

CPSC 322, Lecture 30

422 big picture: Where are we?

StarAI (statistical relational AI)

Hybrid: Det +Sto Prob CFG **Prob** Relational Models

	Deterministic	Stochastic	Markov Logics	
Query	Logics First Order Logics Ontologies	Belief NetsApprox. : GibbsMarkov Chains and HMForward, Viterbi···.Approx. : Particle Filte	Ms ring	
-	Full ResolutionSAT	Undirected Graphical Markov Networks Conditional Random Fi	odels elds	
Plannin	g	Markov Decision Proces Partially Observable MD	ses and P	
		Value Iteration Approx. Inference <i>Reinforcement Learni</i>	ng Representati	on
	Applicatio	Reasonin	g	

Reasoning Technique

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic

Statistical Relational Models

Goals:

- Combine (subsets of) logic and probability into a single language (R&R system)
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems

L. Getoor & B. Taskar (eds.), *Introduction to Statistical Relational Learning,* MIT Press, 2007.

Plethora of Approaches

- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models
 [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]
- And many others!

Prob. Rel. Models vs. Markov Logic

PRM - Relational Skeleton - Dependency Graph - Parameters (CPT)

-weighted logical formulas MARKOV - set of constants NETWORK

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic
 - Markov Logic Network (MLN)

Parameterization of Markov Networks

Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

As in BNets by multiplying them!

 $\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$ $P(A, B, C, D) = \frac{1}{Z} \tilde{P}(A, B, C, D)$

Assignment		nt	Unnormalized	Normalized			
a^0	90	c^0	d^0	300000	.04	(D. 1)	
a^0	b^0	c^0	d^1	300000	· 0 4	$\phi_4[D,A]$	$\varphi_1[A, B]$
a^0	b^0	c^1	d^0	300000	.04 ,	$d^0 a^0 100$	$a^0 b^0 30$
a^0	b^0	c^1	d^1	30	4 1 × 10-6	$a^{0} a^{1} = 1$ (A) $a^0 b^1 5$
a^0	b^1	c^0	d^0	500	•	$d^1 a^0 1$	$\begin{pmatrix} a^1 & b^0 & 1 \\ a^1 & b^1 & 10 \end{pmatrix}$
a^0	b^1	c^0	d^1	500		a* a* 100	a* b* 10
a^0	b^1	c^1	d^0	5000000	. 69	4	>
a^0	b^1	c^1	d^1	500		(D)	(B)
a^1	b^0	c^0	d^0	100	· ·		
a^1	b^0	c^0	d^1	1000000	·	ALC DI	de B.Cl
a^1	b^0	c^1	d^0	1.00	1		
a^1	b^0	c^1	d^1	100		$c^{0} d^{0} 1 (C)$	$b^0 c^0 100$
a^1	b^1	c^0	d^0	10	•	$c^0 d^1 100$	$b^{0} c^{1} 1$
a^1	b^1	c^0	d^1	100000		$c^{1} d^{1} 1$	$b^1 c^1 100$
a^1	b^1	c^1	d^0	100000			
a^1	b^1	c^1	d^1	100000	}		
1	1	A. 1	10 U				

CPSC 322, Lecture 30

• Factors/Potential-functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum_{x} \prod_{c} \Phi_{c}(x_{c})$$

Smoking	Cancer	Φ(S,C)
F	F	4.5
F	Т	4.5
Т	F	2.7
Т	Т	4.5

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks
- Markov Logic

CPSC 322, Lecture 30

Markov Logic: Intuition(1)

 A logical KB is a set of hard constraints on the set of possible worlds INDIVIDUALS= (2, b)

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

• Let's make them **soft constraints**:
When a world violates a formula,
the world becomes less probable, not impossible
$$f = f$$
 (a) $= F$ (b) $= F$
 $= F$
(c) $= F$
(c

Markov Logic: Intuition (2)

- The more formulas in the KB a possible world satisfies the more it should be likely
- Give each formula a **weight**
- By design, if a possible world satisfies a formula its log probability should go up proportionally to the formula weight.

$\log(P(world)) \propto \left(\sum weights of formulas it satisfies\right)$

 $P(world) \propto exp(\sum weights of formulas it satisfies)$

Markov Logic: Definition

- A Markov Logic Network (MLN) is
 - a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a **real number**
 - Together with a set C of constants,
- It defines a Markov network with
 - One *binary node* for each **grounding** of each **predicate** in the MLN
 - One *feature/factor* for each **grounding** of each formula F in the MLN, with the corresponding weight w

Grounding: substituting vars with constants

(not required)consider Existential and functions

Table 2.2: Construction of all groundings of a first-order formula under Assumptions 2.2–2.4.

function Ground(F)input: F, a formula in first-order logic output: G_F , a set of ground formulas for each existentially quantified subformula $\exists x \ S(x)$ in F $F \leftarrow F$ with $\exists x \ S(x)$ replaced by $S(c_1) \lor S(c_2) \lor \ldots \lor S(c_{|C|})$, where $S(c_i)$ is S(x) with x replaced by c_i $G_F \leftarrow \{F\}$ for each universally quantified variable x for each formula $F_i(x)$ in G_F $G_F \leftarrow (G_F \setminus F_i(x)) \cup \{F_i(c_1), F_i(c_2), \dots, F_i(c_{|C|})\},\$ where $F_i(c_i)$ is $F_i(x)$ with x replaced by c_i for each formula $F_i \in G_F$ repeat for each function $f(a_1, a_2, ...)$ all of whose arguments are constants $F_j \leftarrow F_j$ with $f(a_1, a_2, \ldots)$ replaced by c, where $c = f(a_1, a_2, \ldots)$ until F_i contains no functions

return G_F

Smoking causes cancer.

Friends have similar smoking habits.

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

MLN nodes

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

 One *binary node* for each grounding of each predicate in the MLN

Grounding: substituting vars with constants

• Any nodes missing?

MLN nodes (complete)

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

 One *binary node* for each grounding of each predicate in the MLN

Friends(A,B)

MLN features

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula

MLN features

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula

One *feature/factor* for each **grounding** of each **formula F** in the MLN

MLN: parameters

1.5
$$\forall x \, Smokes(x) \Rightarrow Cancer(x)$$

 $f(Smokes(x), Cancer(x)) = \begin{cases} 1 & \text{if } Smokes(x) \Rightarrow Cancer(x) \\ 0 & \text{otherwise} \end{cases}$
 $\mathcal{P}^{V2} = \mathcal{P}^{V2} = \mathcal{P}$

CPSC 322, Lecture 30

CPSC 322, Lecture 30

CPSC 322, Lecture 30

MLN: prob. Of possible world

Probability of a world pw:

Learning Goals for today's class

You can:

- Describe the intuitions behind the design of a Markov Logic
- Define and Build a Markov Logic Network
- Justify and apply the formula for computing the probability of a possible world

Next class on Wed Markov Logic

- -relation to FOL
- Inference (MAP and Cond. Prob)

Assignment-4 posted, due on Dec 2

Relation to First-Order Logic

- Example pag 17
- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights ⇒
 Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

• **Problem:** Find most likely state of world given evidence

• **Problem:** Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \quad \frac{1}{Z_{x}} \exp\left(\sum_{i} w_{i} n_{i}(x, y)\right)$$

Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al., 1997]

The MaxWalkSAT Algorithm

Computing Probabilities

- P(Formula|MLN,C) = ?
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

Directed Models vs. Undirected Models

Undirected Probabilistic Logic Models

- Upgrade undirected propositional models to relational setting
 - Markov Nets → Markov Logic Networks
 - Markov Random Fields \rightarrow Relational Markov Nets
 - Conditional Random Fields \rightarrow Relational CRFs

43

Markov Logic Networks (Richardson & Domingos)

- Soften logical clauses
 - A first-order clause is a **hard** constraint on the world

 $\forall x, person(x) \rightarrow \exists y, person(y), father(x, y)$

 Soften the constraints so that when a constraint is violated, the world is less probably, not impossible

w: friends $(x, y) \land$ smokes $(x) \rightarrow$ smokes (y)

- Higher weight \Rightarrow Stronger constraint
- Weight of $\infty \implies$ first-order logic

Probability(World S) = $(1/Z) \times \exp \{\Sigma \text{ weight}_i \times \text{ numberTimesTrue(f}_i, S) \}$

1.5
$$\forall x \, Smokes(x) \Rightarrow Cancer(x)$$

1.1
$$\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$$

Two constants: Anna (A) and Bob (B)

CPSC 322, Lecture 30

45

Alphabetic Soup => Endless Possibilities

- Probabilistic Relational Models (PRM)
- Bayesian Logic Programs (BLP)
- PRISM
- Stochastic Logic Programs (SLP)
- Independent Choice Logic (ICL)
- Markov Logic Networks (MLN)
- Relational Markov Nets (RMN)
- CLP-BN
- Relational Bayes Nets (RBN)
- Probabilistic Logic Progam (PLP)
- ProbLog

....

- Web data (web)
- Biological data (bio)
- Social Network Analysis(soc)
- Bibliographic data (cite)
- Epidimiological data (epi)
- Communication data (comm)
- Customer networks (cust)
- Collaborative filtering problems (cf)
- Trust networks (trust)

•••

 Fall 2003 – Dietterich @ OSU, Spring 2004 –Page @ UW, Spring 2007-Neville @ Purdue,

 Fall 2008 – Pedro @ CMU
 CPSC 322, Lecture 30
 46

Recent Advances in SRL Inference

- Preprocessing for Inference
 - □ FROG Shavlik & Natarajan (2009)
- Lifted Exact Inference
 - □ Lifted Variable Elimination Poole (2003), Braz et al(2005) Milch et al (2008)
 - □ Lifted VE + Aggregation Kisynski & Poole (2009)
- Sampling Methods
 - □ MCMC techniques Milch & Russell (2006)
 - □ Logical Particle Filter Natarajan et al (2008), ZettleMoyer et al (2007)
 - □ Lazy Inference Poon et al (2008)
- Approximate Methods
 - □ Lifted First-Order Belief Propagation Singla & Domingos (2008)
 - □ Counting Belief Propagation Kersting et al (2009)
 - □ MAP Inference Riedel (2008)
- Bounds Propagation
 - □ Anytime Belief Propagation Braz et al (2009)

Conclusion

- Inference is the key issue in several SRL formalisms
- FROG Keeps the count of unsatisfied groundings
 Order of Magnitude reduction in number of groundings
 Compares favorably to Alchemy in different domains
- Counting BP BP + grouping nodes sending and receiving identical messages
 Conceptually easy, scaleable BP algorithm
 Applications to challenging AI tasks
- Anytime BP Incremental Shattering + Box Propagation
 Only the most necessary fraction of model considered and shattered
 Status Implementation and evaluation