Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 20

Oct, 28, 2016

Slide credit: some slides adapted from Stuart Russell (Berkeley),
some from Padhraic Smyth (UClrvine)
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PhD thesis | was reviewing last year...
University of Alberta

EXTRACTING INFORMATION NETWORKS FROM TEXT

We model predicate detection as a sequence labeling

problem — .... We adopt the BIO encoding, a widely-used
technigue in NLP.

Our method, called Meta-CRF, is based on Conditional
Random Fields (CRF) .

CRF is a graphical model that estimates a conditional

probabillity distribution, denoted p(yjx), over label sequence
y given the token sequence X.
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Logics in Al: Similar slide to the one for planning
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Relationships between different Logics
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Lecture Overview

Basics Recap: Interpretation / Model /..
Propositional Logics

Satisfiability, Validity

Resolution in Propositional logics
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Basic definitions from 322 (Semantics)

Definition (interpretation)
An interpretation | assigns a truth value to each atom.

Definition (truth values of statements cont’ ): Aknowledge base AB
Is true in | if and only if every clause in KB is true in I.
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PDC Semantics: Knowledge Base (KB)

« Aknowledge base KB is true in | if and only if
every clause in KB is true in |.

P q r S

I, true true false false iclicker.

Which of the three KB below is fue in 1, ?

A B C

p p o

r q g—rAs
s—qgAp s“—q




PDC Semantics: Knowledge Base (KB)

« Aknowledge base KB Is true in | if and only if
every clause in KB is true in I.

P q r S
I true  true false false
KB, KB, KB,
P P P
r q q«rAs
S—(q/1p S<—(

Which of the three KB above is Truein I, ? KB,



Basic definitions from 322 (Semantics)

Definition (interpretation)
An interpretation | assigns a truth value to each atom.

Definition (truth values of statements cont’ ): Aknowledge base AB
Is true in | if and only if every clause in KB is true in I.

Definition (model)
Amodel of a set of clauses (a KB) is an interpretation in which all

the clauses are true.
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Example: Models
(p«q.
KB =+

I < S.
4 . £0ED

true true true true i Which interpretations are

2
false false false < moaels:

true true false false M

true true true false )

true true [ false true| <
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Basic definitions from 322 (Semantics)

Definition (interpretation)
An interpretation | assigns a truth value to each atom.

Definition (truth values of statements cont’ ): Aknowledge base AB
Is true in | if and only if every clause in KB is true in I.

Definition (model)
Amodel of a set of clauses (a KB) is an interpretation in which all

the clauses are true.

Definition (logical consequence)
If KB is a set of clauses and G is a conjunction of atoms, G is a

logical consequence of KB, written KB £ G, if G is true In
every model of AB.
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Basic definitions from 322 (Proof Theory)

Definition (soundness)
Aproof procedure is sound if KB+ G implies KB F G.

Definition (completeness)
Aproof procedure is complete if KB ¥ G implies KB+ G.
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Lecture Overview

Basics Recap: Interpretation / Model /

Propositional Logics
Satisfiability, Validity

Resolution in Propositional logics

CPSC 322, Lecture 19
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Relationships between different Logics
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Propositional logic: Syntax
Atomic sentences = single proposition symbols
Eg, P, QR
Special cases: True = always true, False = always false

Complex sentences:

If S is a sentence, —S is a sentence (negation)

If S, and S, are sentences, S; A S, is a sentence (conjunction)
If S, and S, are sentences, S, v S, is a sentence (disjunction)
If S, and S, are sentences, S; = S, is a sentence (implication)

If S; and S, are sentences, S; <> S, is a sentence (biconditional)
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Propositional logic: Semantics

Each interpretation specifies true or false for each proposition symbol

E.g p q r

false true false

Rules for evaluating truth with respect to an interpretation I :
—S is true iff S is false
S;AS, istrue iff S;is true and S, is true
S; Vv S, istrue iff S,is true or S, is true
S =3, is true iff S, is false or S, is true

i.e., is false iff S;is true and S, is false

S; & S,is true iff S, =S, is true and S,=S, is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
(prlavr)e —p =T ACTVE))ES

(T A T\ <>\
> T
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Logical equivalence

Two sentences are logically equivalent iff true in same interpretations

o= difand enly if o = 7 and 5 = o Th@ol have the sawae
rmodelsg
(v A F) = (3 A a) commutativity of A
(V' 3) = (FVa) commutativity of v
((arnB)A~y) = (a3 A7) associativity of A
(V)W) = (v (3 y)) associativity of V
—(—x) = « double-negation elimination
0 = F) = (-7 = —-a) contraposition
(v = F) = (—a Vv 3) implication elimination
v = F) = ((a = #)A (7 = o)) biconditional eliminatior
(A F) = (—a Vv -G) De Morgan
=V 3) = (—a A=F) De Morgan
(a A (BVA)) = ((anB)V (any)) distributivity of A over
V(G AY)) = (e 8) A (Vo)) distributivity of v over A
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[3 Mooy commutativity of A

(3% ) commutativity of v

(v A (3 A 7y))  associativity of A

(cx vV (3 7)) associativity of V/

v double-negation elimination

(=3 = —a) contraposition

(—ae % [3)  implication elimination

(v = 3)A (7 = «)) biconditional elimination
(= W =) De Morgan

[—um- M=) De Morgan

(v A 3) W (e Avy))  distributivity of A over W
(v 3) A (o Voy)) distributivity of Vv over A

Can be used to rewrite formulas....

(p=> 109/ r)) 1PV 19 V¥
TpvaGian <
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(x A 3) =
lilft W .l'j}
((ce A B) Aoy)

7 A a)  commutativity of A
7% ) commutativity of W
a M3 A ) associativity of A |
(aV @)y = (v (3Yy)) associativity of &/ C P=> C 7 N v
—(—x) = ¢ double-negation eliminaticé
* (o = [F) = (-7 = —a) contraposition > 1° Vo Cq AN
w (o= 4) = (—-aVd) implication elimination
|
@

II
II
II
II

P

0 = 4) = ({a = #)A(F = o)) biconditional eliminatior

=N F) = (—a v =) De Morgan

(Vv F) = (—a A=) De Morgan
(A (B = ((aenG)W (o ny))  distributivity of A over
(aV (FAy)) = (lav @) A (V) distributivity of v over A

Can be used to rewrite formulas....
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Validity and satisfiability

A sentence is valid if it is true in all interpretations
eg., frue, Av-4 A= 4 [(ArnlA=FE) = B

Validity is connected to inference via the Deduction Theorem:
KB Eaifand only if (KE = «) is valid

A sentence is satisfiable if it is true in some interpretation
eg., AV DG, '

A sentence is unsatishiable if it is true in no interpretations
eg., An—-A

Satisfiability is connected to inference via the following:
KB = ifand only if (KB /A —v) is unsatisfiable
.e., prove «v by reductio ad absurdum



Validity and Satisfiability

<O< s valid ‘JVJV 1A UV\S’Q‘}".S/"\%]O\€>

<d\ | S SDﬁg{ns\ola \H T 1S vﬁL

The chicrmes Bhove 3rC.
A AW F=lse

%'. Som—\e T we SQV\/\Q 4%\56
C . A\l Teng

CPSC 322, Lecture 19




Validity and Satisfiability
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Lecture Overview

Basics Recap: Interpretation / Model /
Propositional Logics
Satisfiability, Validity

Resolution in Propositional logics
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Proof by resolution

Key ideas proe +
KB |= o < how
equivalent to : KB A —«a unsatifiable

Cov\()'u nehv e MO(\MQ\

 Simple Representation for For v

e Simple Rule of Derivation

R@ SDI\) ’)”‘0‘/\
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Conjunctive Normal Form (CNF)

Rewrite KB A —a Into conjunction of disjunctions

/ literals
b oL
L (/A)v(—.lj) A QB v —|C>\/<—|D\)/
Clause : C\I;use

* Any KB can be converted into CNF !

CPSC 322, Lecture 19 32



Example: Conversion to CNF

A < (BvQ)

1. Eliminate <, replacing a < 3 with (a = B)A(B = a).
(A= BvC)A(BvC)=A)

2. Eliminate =, replacing a = 3 with —av [3.
(FAvBVvC)A(—=(BVvC)VvA)

3. Using de Morgan's rule replace —(av ) with (—a A = B) :
(AvBVvC)A((=BA=C)VA)

4. Apply distributive law (v over A) and flatten:
(rFAvBVC)A(—-BVA) A(-CVA)

CPSC 322, Lecture 19



Example: Conversion to CNF

A < (BvQ)

5. KB is the conjunction of all of its sentences (all are true),
so write each clause (disjunct) as a sentence in KB:

(—|A v BvC)
(—-BVv A)
(—-C Vv A)

CPSC 322, Lecture 19



Resolution Deduction step

Resolution: inference rule for CNF: sound and complete! *
(AvBvC)

(—A) “If Aor B or C is true, but not A, then B or C must be true.”
(BvC)
(AvBvC) “If A is false then B or C must be true, or if Ais true
(-AvDVE) then D or E must be true, hence since Ais either true or
___________ false, B or C or D or E must be true.”
(BvCvDVE)
(Av B)
(A v B) / Simplification
(BvB)=8B

CPSC 322, Lecture 19



Learning Goals for today’s class

YOou can:

« Describe relationships between different logics

* Apply the definitions of Interpretation, model, logical
entailment, soundness and completeness

* Define and apply satisfiability and validity
« Convert any formula to CNF
« Justify and apply the resolution step

CPSC 322, Lecture 19



Next class Mon

Finish Resolution

Another proof method for Prop. Logic
Model checking — Searching through truth assignments. Walksat.

First Order Logics

CPSC 322, Lecture 19



Ignore from this slide forward

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and

complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the ' 5.

CPSC 322, Lecture 19



Try It Yourselves

« 7.9 page 238: (Adapted from Barwise and
Etchemendy (1993).) If the unicorn is
mythical, then it is immortal, but If it IS not
mythical, then it is a mortal mammal. If the
unicorn is either immortal or a mammal,
then it Is horned. The unicorn is magical if
it Is horned.

 Derive the KB In normal form.

SC 322, Lectu

» Prove: Horned, Prove’ Magical.



Exposes useful constraints

“You can’t learn what you can’t represent.” --- G. Sussman

In logic: If the unicorn is mythical, then it is immortal, but if it
is not mythical, then it is a mortal mammal. If the unicorn is
either immortal or a mammal, then it is horned. The unicorn is
magical if it is horned.

Prove that the unicorn is both magical and horned.
A good representation makes this problem easy:

(7YV2R)M(YVR)M(YVM)*(RVH )M ("MVH)*(~HVG)

CPSC 322, Lecture 19



|| Resolution l

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals

clauses
Eg., (Av =B)A (Bv=CvV-D)

Resolution inference rule (for CNF): complete for propositional logic

TR iy o e W omy,

r"l Woe e NS i—1 Wi i+1 LT i AT | 'r'] e e W 'r'.i;—] WO Ir.lf; “1 e e T f

where £; and m; are complementary literals. E.g.,
13V Fha, -y
- o
IS

[
P
[
Resolution is sound and complete for propaesitional logic | W
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Conversion to CNF

By = (FP2V P

1. Eliminate <=, replacing o = G with (oo = J) /A (3 = a).
(Bia = (PaV Po)) A ((Pi2V Pr) = Bia)

2. Eliminate =, replacing o = 3 with —a v 3.
(=B11V PiaV Poy) A(=(PraV Pax)V By

3. Move — inwards using de Morgan's rules and double-negation:
(=B11V PlaV Py ) AP A =Py )V Byg)

&5

4. Apply distributivity law (v over /) and flatten:

CPSC 322, Lecture 19



|| Resolution example |

a'r'i.- Jr.'J = I !rf| 1 — :..'I1I|__' .'II_.' ] M _'.Ilr.])|_| [ _'.';I|

Y Dy |_'BHP_ P_l| _']1.: Hl 1y |_1D:|
-~ e

- e 1 S g - J k
T > ~ |

(=B, BV By o B =L r B B B g P =B [SF, |:p1—| |

n,

|
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Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power

CPSC 322, Lecture 19



Logical equivalence

To manipulate logical sentences we need some rewrite rules.

Two sentences are logically equivalent iff they are true in same models: @ = Biff a F 8 and B | &

(N B) = (BN «) commutativity of A
(aV @) = (BVa) commutativity of V
(@ AB)A7y) = (aA(BA7y)) associativity of A
(avB)Vy) = (aV(BVy)) associativity of
—(—a) = a double-negation elimination
(@ = B) = (-8 = —a) contraposition
(¢ = ) = (-~ V [3) implication elimination
(@ & B) = ((a = B)AN(B = «)) biconditional elimination
(A f) = (maV —~fF) de Morgan
—(aV @) = (raAN—fF) de Morgan
(@A (BVY) = ((anp)V(aAy)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

CPSC 322, Lecture 19



Validity and satisfiability

A sentence is valid if it is true in all models,

e.g., True, A v—A, A= A, (A A (A= B))
= B

(tautologies)

Validity is connected to inference via the
Deduction Theorem:

KB F « if and only if (KB= @) is valid

A sentence is satisfiable if it is true in some model
e.g., Av B, C
(determining satisfiability of sentences is NP-complete)

A sentence is unsatisfiable if it is false in all models

e.g., AA—A CPSC 322, Lecture 19



Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules:

Legitimate (sound) generation of new sentences from old.
v Resolution
v" Forward & Backward chaining

Model checking

Searching through truth assignments.
v Improved backtracking: Davis——Putnam—Logemann—Loveland (DPLL)
v'Heuristic search in model space: Walksat.

CPSC 322, Lecture 19



UClrvine

UNIVERSITY OF CALIFORNLA

Normal Form

We want to prove: | KB |= «

equivalent to : KB A —« unsatifiable

We first rewrite KB A —¢ Into conjunctive normal form (CNF).

literals

A “conjunction of diW

(Av -B) A (Bv —-C v -=D)
H_J - ~ J
Clause Clause

* Any KB can be converted into CNF
» k-CNF: exactly k literals per clause

CS 271, Fall 2007: Professor Padhraic Smyth Topic 7: Propositional Logic 48



UClrvine

UNIVERSITY OF CALIFORNLA

Example: Conversion to CNF

B1,1 Nt (Pl,z Vv P2,1)

1. Eliminate <, replacing a < B with (a = B)A(B = a).
(Bl,l = (P1,2 Vv P2,1)) A ((Pl,z Vv P2,1) — I31,1)

2. Eliminate =, replacing a = B with —-av B.
(ﬁB1,1 Vv P1,2 Vv P2,1) A (ﬂ(PLz Vv P2,1) Vv I31,1)

3. Move - inwards using de Morgan's rules and double-negation:
(ﬁB1,1 Vv F)1,2 Vv P2,1) A ((—'P1,2 A ﬁpz,1) Vv B1,1)

4. Apply distributive law (A over v) and flatten:
(ﬂB1,1 Vv P1,2 Vv I:)2,1) A (ﬂP1,2V B1,1) A (—'P2,1 Vv B1,1)

CS 271, Fall 2007: Professor Padhraic Smyth Topic 7: Propositional Logic 49



UClrvine

UNIVERSITY OF CALIFORNLA

Resolution Inference Rule for CNF

(AvBvC)
(—A)

(AvBVvC)
(-AvDVE)

(BvCvDVE)

(Av B)
(-AvB)

“If Aor B or C is true, but not A, then B or C
must be true.”

“If Alis false then B or C must be true,

or if Ais true then D or E must be true,
hence since A is either true or false, B or
C or D or E must be true.”

CS 271, Fall 2007: Professor Padhraic Smyth

Simplification

Topic 7: Propositional Logic 50



UClrvine

UNIVERSITY OF CALIFORNLA

Resolution Algorithm

- The resolution algorithm tries to prove: KB |= a equivalent to
KB A —a unsatisfiable

« Generate all new sentences from KB and the query.
« One of two things can happen:

1. We find P A—P which is unsatisfiable,
l.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the
Sentence (non-trivial) and hence we cannot entail the query.

KB A -«

CS 271, Fall 2007: Professor Padhraic Smyth Topic 7: Propositional Logic 51



UClIrvine

UNIVERSITY OF CALIFORNL

Resolution example

) KB = (Bl,l = (P1’2V lel)) A Bl,l
e a=-P,

KB A —cx

A
~ N
‘ _'Pz,f\*"r Bl,l _'Bl.l\f” P1,1V Pz,l LT Bl.l Pl,z
/I [ | I
-B,,v P,V B, P.v P, P, !_' B, v P,V Bulpu\; P,/ P, ‘ -P,, ‘ =P,
True
False in
all worlds

CS 271, Fall 2007: Professor Padhraic Smyth Topic 7: Propositional Logic 52



UClIrvine

UNIVERSITY OF CALIFORNIA, IRVINE

Horn Clauses

* Resolution in general can be exponential in space and time.

* If we can reduce all clauses to “Horn clauses” resolution is linear in space and time

/

A clause with at most 1 positive literal.
eg Av _lB vV —|C

* Every Horn clause can be rewritten as an implication with
a conjunction of positive literals in the premises and a single
positive literal as a conclusion.

€0d. BAC=A

« 1 positive literal: definite clause

* 0 positive literals: Fact or integrity constraint:
e.g. (wAv—=B)=(AAB = False)

CS 271, Fall 2007: Professor Padhraic Smyth Topic 7: Propositional Logic 53



Normal Form

We want to prid¢¥é: «

equivalent to : KB A —« unsatifiable

We first reviffite—< into conjunctive normal form (C

A “Conjunctiowﬁmoﬂgmals
(Av —=B) A (Bv—-Cv-D)

- N
Clause Clause

» Any KB can be converted into CNF
« K-CNF: exactly k litesalspet.clause



Example: Gonversion to CNF
By, & (Piyv Py

1. Eliminate <, replacing @ < B with (o = BIA(B = a).
(Bm = (P1,2 Vv P2,1)) A ((P1,2 Vv P2,1) = B1,1)

2. Eliminate =, replacing @ = B with —av B.
(=B VP, vPy ) APy, vP,y) vByy)

3. Move — inwards using de Morgan's rules and double—negation:
(B VP, VP ) A(=P ;A —P,y) v Byy)

4. Apply distributive law (A over v) and flatten:
(=B VP, VP ) A(=P ;v B ) A (=P, v By )

CPSC 322, Lecture 19



Resolution Inference Rule for CNF

(AvBvC)

(—A) “If A or B or C 1s true, but not A,

____________ then B or C must be true.”

(BvC)

(AvBvC) “If A 1s false then B or C must

(-AvDVE)

___________ be true,

“(BvCvDVE) or if Ais true then D or E
must be true, hence since A

(AvB) IS elther true or false, B or C

(A v8) or D or E must be true.”

———————— - Simplification

CPSC 322, Lecture 19



Resolution Algorithm

® The resolution algorithm tries to prove: KB |= o equivalent to
KB A —a unsatisfiable

« Generate all new sentences from KB and the query.
« One of two things can happen:

1. Wefind © 2P which is unsatisfiable,
l.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the
Sentence (non-trivial) and hence we cannot entail the query.

KB A -«

CPSC 322, Lecture 19



Resolution example

o = _'P1,2 KB A —a
/\

—
‘_'P 1VB11 _'BHVP VPM

T

B,V P,VB, P\ P, =P, |_'B11VP1VBH

ﬁPljv% P |

-_----H-'"""-m_._

—

— |

//

True

P,zv Pz,l\f" _'Pz,l

_|P111 ‘
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Horn Clauses

 Resolution in general can be exponential in space and time.

* It we can reduce all clauses to “Horn clauses™ resolution is |

A clj;lusg With at most 1 positive literal.

e.g.

 Every Horn clause can be rewritten as an implication witf
a corfjunttion of positive literals in the premises and a sin
positive literal as a conclusion.

e.g.

(wAv—-B)=(AAB = False)

« 1 positive literal: definite clause

CPSC 322, Lecture 19



