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We model predicate detection as a sequence labeling 

problem — …. We adopt the BIO encoding, a widely-used 

technique in NLP.

Our method, called Meta-CRF, is based on Conditional 

Random Fields (CRF) . 

CRF is a graphical model that  estimates a conditional 

probability distribution,  denoted p(yjx), over label sequence 

y given the token sequence x.

PhD thesis I was reviewing last year… 

University of Alberta

EXTRACTING INFORMATION NETWORKS FROM TEXT



422 big picture: Where are we?

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics
Belief Nets

Markov Decision Processes  and  
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Markov Chains and HMMsFirst Order Logics
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Applications of AI

Approx. : Gibbs
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Reinforcement Learning Representation
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Prob Relational Models
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Forward, Viterbi….

Approx. : Particle Filtering
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StarAI (statistical relational AI)

Hybrid: Det +Sto
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Logics in AI: Similar slide to the one for planning

Propositional 
Logics

First-Order 
Logics

Propositional Definite 
Clause  Logics

Semantics and Proof 
Theory

SatisfiabilityTesting (SAT)

Description  
Logics

Cognitive Architectures

Video Games

Hardware Verification

Product Configuration

Ontologies

Semantic Web

Information 
Extraction

Summarization

Production Systems

Tutoring Systems
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Relationships between different Logics 
(better with colors)
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Lecture Overview

• Basics Recap: Interpretation / Model /.. 

• Propositional Logics

• Satisfiability, Validity

• Resolution in Propositional logics
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Basic definitions from 322 (Semantics)

Definition (truth values of statements cont’): A knowledge base KB
is true in I if and only if every clause in KB is true in I.   

Definition (interpretation)
An interpretation I assigns a truth value to each atom.



PDC Semantics: Knowledge Base (KB)

p q r s

I1 true true false false

p
r
s ← q ∧ p

p
q
s ← q

p
q ← r ∧ s

A B C

Which of the three KB below is True in I1  ?

• A knowledge base KB is true in I if and only if 

every clause in KB is true in I.



PDC Semantics: Knowledge Base (KB)

p q r s

I1 true true false false

p

r

s ← q ∧ p

p

q

s ← q

p

q ← r ∧ s

KB1 KB2
KB3

Which of the three KB above is True in I1 ? KB3

• A knowledge base KB is true in I if and only if 

every clause in KB is true in I.
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Basic definitions from 322 (Semantics)

Definition (truth values of statements cont’): A knowledge base KB
is true in I if and only if every clause in KB is true in I.   

Definition (model)
A model of a set of clauses (a KB) is an interpretation in which all 

the clauses are true.

Definition (interpretation)
An interpretation I assigns a truth value to each atom.
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Example: Models















.

.

.

sr

q

qp

KB

Which interpretations are 
models?

p q r s

I1 true true true true

I2 false false false false

I3 true true false false

I4 true true true false

I5 true true false true
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Basic definitions from 322 (Semantics)

Definition (truth values of statements cont’): A knowledge base KB
is true in I if and only if every clause in KB is true in I.   

Definition (model)
A model of a set of clauses (a KB) is an interpretation in which all 

the clauses are true.

Definition (logical consequence)
If KB is a set of clauses and G is a conjunction of atoms, G is a 

logical consequence of KB, written KB ⊧ G, if G is true in 
every model of KB.

Definition (interpretation)
An interpretation I assigns a truth value to each atom.



Is it true that  if
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Basic definitions from 322 (Proof Theory)

Definition (soundness)

A proof procedure is sound if KB ⊦ G implies KB ⊧ G.

Definition (completeness)

A proof procedure is complete if KB ⊧ G implies KB ⊦ G.
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Lecture Overview

• Basics Recap: Interpretation / Model / 

• Propositional Logics

• Satisfiability, Validity

• Resolution in Propositional logics

Slide 18
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Relationships between different Logics 
(better with colors)



Propositional logic: Syntax
Atomic sentences = single proposition symbols

• E.g., P, Q, R

• Special cases: True = always true, False = always false

Complex sentences:  

• If S is a sentence, S is a sentence (negation)

• If S1 and S2 are sentences, S1  S2 is a sentence (conjunction)

• If S1 and S2 are sentences, S1  S2 is a sentence (disjunction)

• If S1 and S2 are sentences, S1  S2 is a sentence (implication)

• If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)
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Propositional logic: Semantics
Each interpretation specifies true or false for each proposition symbol

E.g. p q r
false true false

Rules for evaluating truth with respect to an  interpretation I :
S is true iff S is false  

S1  S2 is true iff S1 is true and S2 is true

S1  S2 is true iff S1is true or S2 is true

S1  S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1  S2 is true iff S1S2 is true and S2S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
(p  (q  r ))  p =

CPSC 322, Lecture 19
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interpretations
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Can be used to rewrite formulas….
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Can be used to rewrite formulas….
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interpretations

interpretation

interpretations



Validity and Satisfiability
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Validity and Satisfiability
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Lecture Overview

• Basics Recap: Interpretation / Model / 

• Propositional Logics

• Satisfiability, Validity

• Resolution in Propositional logics



Proof by resolution

Key ideas

• Simple Representation for 

• Simple Rule of Derivation
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|

:

KB

equivalent to KB unsatifiable







 



Conjunctive Normal Form (CNF)

Rewrite                  into conjunction of disjunctionsKB 

(A  B)  (B  C  D)

ClauseClause

literals

• Any KB can be converted into CNF !
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Example: Conversion to CNF

A   (B  C)

1. Eliminate , replacing α  β with (α  β)(β  α).
(A  (B  C))  ((B  C)  A)

2. Eliminate , replacing α  β with α β.
(A  B  C)  ((B  C)  A)

3. Using de Morgan's rule replace (α β) with (α   β) :
(A  B  C)  ( ( B   C)  A)

4. Apply distributive law ( over ) and flatten:
(A  B  C)  (B  A)  (C  A)
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Example: Conversion to CNF

A   (B  C)

5. KB is the conjunction of all of its sentences (all are true),

so write each clause (disjunct) as a sentence in KB:

…
(A  B  C) 

(B  A) 

(C  A)

…
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Resolution Deduction step
Resolution: inference rule for CNF: sound and complete! *

( )

( )

( )

A B C

A

B C

 



           

 

“If A or B or C is true, but not A, then B or C must be true.”

( )

( )

( )

A B C

A D E

B C D E

 

  

          

   

“If A is false then B or C must be true, or if A is true

then D or E must be true, hence since A is either true or 

false, B or C or D or E must be true.” 

( )

( )

( )

A B

A B

B B B



 

       

  

Simplification
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Learning Goals for today’s class

You can:

• Describe relationships between different logics

• Apply the definitions of Interpretation, model, logical 

entailment, soundness and completeness

• Define and apply satisfiability and validity

• Convert any formula to CNF

• Justify and apply the resolution step



Next class Mon

• Finish Resolution

• Another proof method for Prop. Logic
Model checking - Searching through truth assignments. Walksat.

• First Order Logics
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Ignore from this slide forward
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Try it Yourselves

• 7.9 page 238: (Adapted from Barwise and 

Etchemendy (1993).) If the unicorn is 

mythical, then it is immortal, but if it is not 

mythical, then it is a mortal mammal. If the 

unicorn is either immortal or a mammal, 

then it is horned. The unicorn is magical if 

it is horned.

• Derive the KB in normal form.

• Prove: Horned, Prove: Magical.
CPSC 322, Lecture 19



Exposes useful constraints

• “You can’t learn what you can’t represent.” --- G. Sussman

• In logic: If the unicorn is mythical, then it is immortal, but if it 
is not mythical, then it is a mortal mammal. If the unicorn is 
either immortal or a mammal, then it is horned. The unicorn is 
magical if it is horned.

Prove that the unicorn is both magical and horned.

• A good representation makes this problem easy:

( ¬ Y ˅ ¬ R ) ^ ( Y ˅ R ) ^ ( Y ˅ M ) ^ ( R ˅ H ) ^ ( ¬ M ˅ H ) ^ ( ¬ H ˅ G )

1010

1111

0001

0101
CPSC 322, Lecture 19
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Logical equivalence

To manipulate logical sentences we need some rewrite rules.

Two sentences are logically equivalent iff they are true in same models: α ≡ ß iff α╞ β and β╞ α
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Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A A, A  A, (A  (A  B)) 
 B

(tautologies)

Validity is connected to inference via the 
Deduction Theorem:
KB ╞ α if and only if (KB  α) is valid

A sentence is satisfiable if it is true in some model
e.g., A B, C
(determining satisfiability of sentences is NP-complete)

A sentence is unsatisfiable if it is false in all models
e.g., AA

Satisfiability is connected to inference via the 
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Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules:
Legitimate (sound) generation of new sentences from old.

 Resolution

 Forward & Backward chaining 

Model checking
Searching through truth assignments.

 Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL)

Heuristic search in model space: Walksat.

CPSC 322, Lecture 19



Topic 7: Propositional Logic 48CS 271, Fall 2007: Professor Padhraic Smyth 

Normal Form

We first rewrite                  into conjunctive normal form (CNF).

|

:

KB

equivalent to KB unsatifiable







 

We want to prove:

KB 

A “conjunction of disjunctions”

(A  B)  (B  C  D)

ClauseClause

literals

• Any KB can be converted into CNF

• k-CNF: exactly k literals per clause
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Example: Conversion to CNF

B1,1  (P1,2  P2,1)

1. Eliminate , replacing α  β with (α  β)(β  α).
(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2.   Eliminate , replacing α  β with α β.
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3.   Move  inwards using de Morgan's rules and double-negation:
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4.   Apply distributive law ( over ) and flatten:
(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)
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Resolution Inference Rule for CNF

( )

( )

( )

A B C

A

B C

 



           

 

“If A or B or C is true, but not A, then B or C 

must be true.”

( )

( )

( )

A B C

A D E

B C D E

 

  

          

   

“If A is false then B or C must be true, 

or if A is true then D or E must be true,   

hence since A is either true or false, B or 

C or D or E must be true.” 

( )

( )

( )

A B

A B

B B B



 

       

  

Simplification
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• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.

• One of two things can happen:

1. We find                 which is unsatisfiable,

i.e. we can entail the query.

2.  We find no contradiction: there is a model that satisfies the 

Sentence (non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to

KB unsatisfiable







 

P P

KB 
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Resolution example

• KB = (B1,1  (P1,2 P2,1))  B1,1 

• α = P1,2

KB 

False in

all worlds

True
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Horn Clauses

• Resolution in general can be exponential in space and time.

• If we can reduce all clauses to “Horn clauses” resolution is linear in space and time

A clause with at most 1 positive literal.

e.g. 

• Every Horn clause can be rewritten as an implication with

a conjunction of positive literals in the premises and a single

positive literal as a conclusion.

e.g.

• 1 positive literal: definite clause

• 0 positive literals: Fact or integrity constraint:

e.g.  

A B C   

B C A 

( ) ( )A B A B False    



Normal Form

We first rewrite                  into conjunctive normal form (CNF).

|

:

KB

equivalent to KB unsatifiable







 

We want to prove:

KB 

A “conjunction of disjunctions”

(A  B)  (B  C  D)

ClauseClause

literals

• Any KB can be converted into CNF

• k-CNF: exactly k literals per clauseCPSC 322, Lecture 19



Example: Conversion to CNF

B1,1  (P1,2  P2,1)

1. Eliminate , replacing α  β with (α  β)(β  α).
(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2.   Eliminate , replacing α  β with α β.
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3.   Move  inwards using de Morgan's rules and double-negation:
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4.   Apply distributive law ( over ) and flatten:
(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)

CPSC 322, Lecture 19



Resolution Inference Rule for CNF

( )

( )

( )

A B C

A

B C

 



           

 

“If A or B or C is true, but not A, 

then B or C must be true.”

( )

( )

( )

A B C

A D E

B C D E

 

  

          

   

“If A is false then B or C must 

be true, 

or if A is true then D or E 

must be true,   hence since A 

is either true or false, B or C 

or D or E must be true.” 

( )

( )

( )

A B

A B

B B B



 

       

  

Simplification
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• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.

• One of two things can happen:

1. We find                 which is unsatisfiable,

i.e. we can entail the query.

2.  We find no contradiction: there is a model that satisfies the 

Sentence (non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to

KB unsatisfiable







 

P P

KB 

CPSC 322, Lecture 19



Resolution example

KB = (B1,1  (P1,2 P2,1))  B1,1 

α = P1,2 KB 

False in

all worlds

True
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Horn Clauses

• Resolution in general can be exponential in space and time.

• If we can reduce all clauses to “Horn clauses” resolution is linear

A clause with at most 1 positive literal.

e.g. 

• Every Horn clause can be rewritten as an implication with

a conjunction of positive literals in the premises and a single

positive literal as a conclusion.

e.g.

• 1 positive literal: definite clause

• 0 positive literals: Fact or integrity constraint:

A B C   

B C A 

( ) ( )A B A B False    
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