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Lecture Overview

Value of Information and Value of Gontrol

Recap Markov Chain

Markov Decision Processes (MDPs)

* Formal Specification and example
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Simple Decision Net

Early in the morning. Shall I take my umbrella today? (I’ Il have
to go for a long walk at noon)

Relevant Random Variables?

Lp@@@
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Polices for Umbrella Problem

A policy specifies what an agent should do under each
circumstance (for each decision, consider the parents of the
decision node)

In the Umbrella_case:

D, ¢ TF

One possible Po//c y
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pD, leéu, ié 7; -
VV\VH1 — w\
How many 3 )PD\ 3 polieres
policies? l | D
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= / ',?V:V‘W.eather'
Value of £ Fonesnt 3 \ (/
\ —— %

Information

Early in the morning. I listen to the weather forecast,
shall I take my umbrella today? (I' Il have to go for a
long walk at noon)

What would help the agent make a better Umbrella
decision?
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Value of /Wﬂl
Information Choreeast & @
\ Umbrfgla

The value of information of a random variable X for
decision D is: EU (K”W"“XXB EU{.M# me )

the utility of the network with an arc from X to D mlnus
the utility of the network without the arc.

Intuitively:
* The value of information is always 2.0

* It is positive only if the agent changes £s )0“1'67

CPSC 422, Lecture 2 Slide 7



Value of Information (cont.)

- The value of information provides a bound on how much you
should be prepared to pay for a sensor. How much is a perfect
weather forecast worth?

, g,
0\
|0 i | Umbrella

¢ ox e,
) 0
O o T
* Original rg;um expectedm 77
- Maximum expected utility when we know Weather: 87_ p@@@

- Better forecast is worth at most: /LI.
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Value of Information

- The value of information provides a bound on how much you should be
prepared to pay for a sensor How much is a perfect fire sensor worth?

Smoke

- Original maximum expected utility: ~ ~22.0
- Maximum expected utility when we know Fire: -0 @ p@@@
- Perfect fire sensor is worth: 7 0. 4 |
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/L Weather

Value of Control F\ )v @

What would help the agent to make an even better
Umbrella decision? To maximize its utility.

Umbrella

Weather Umbrella Value
Rain true 70
Rain false 0
noRain true 20
_% noRain)) false 100

The value of control of a variable X is:

the utility of the network when you make X a decision

variable minus the utility of the network when X is a
random variable.
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Value of Control

- What if we could control the weather?

f"""ﬁr E—
. Weather
— w,aw*""

N——

C: | Forecast “f} \L

‘x Umbrella

- Original maximum expected utility: /7

* Maximum expected utility when we control the weather: 100
- ¥lue of control of the weather: 773

p@@@
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Value of Control

- What if we control Tampering?

Tampering )

LA seesoke
Check ¥

Smoke \
'

Report

-0

Call

- Original maximum expected utility: —22.6
- Maximum expected utility when we control the Tampering:
- Value of control of Tampering: |9

- Let’s take a look at the optimal policy

- Gonclusion: do not tamper with fire alarms!
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Lecture Overview

Value of Information and Value of Control

Recap Markov Chain

Markov Decision Processes (MDPs)

* Formal Specification and example
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Combining ideas for Stochastic planning
- What is a key limitation of decision networks?

Represent (and optimize) only a fixed number of
decisions

- What is an advantage of Markov models?

The network can extend indefinitely

Goal: represent (and optimize) an indefinite
sequence of decisions
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Decision Processes
Often an agent needs to go beyond a fixed set of
decisions — Examples?

* Would like to have an ongoing decision process

Infinite horizon problems: process does not stop

ROEOJ['SW\/WMX/ on ?\amct/ M@V\ﬁi’or{'/\é /UVC.(P\awt; S

Indefinite horizon problem: the agent does not know when
the process may stop

\(‘%MMVLX/ IOC_B‘\“\‘OV\

Finite horizon/ the process must end at a give time N

v M {\"CPS
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Lecture Overview (from my 322)

- Temporal Probabilistic Models
- Start Markov Models
* Markov Chain

* Markov Chains in Natural Language
Processing
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Simplest Possible DBN

One random variable for each time slice: let’s assume S,
represents the state at time ¢ with domain {m"-vi

Each random variable depends only on the previous one

ThUSPCS_&.‘.ﬁ l Se - <t\ = F(itjg E{-f>

Intuitively S, conveys all of the information about the history
that can affect the future states.

-/,7“The future is independent of the past given the present.”
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Simplest Possible DBN (cont’ )
P | 53>

\
AP ()P () ()

e How many CPd do we need to specify? S 1.
_cl ker.
G P(s.ls.) P(s.lss) ete lcer]
A. 7

' C.2 D. 3 @
o Stationary process assumption: the m nism

that regulates how state variables change overtime
Is stationarythat is it can be described by a single
transition model

¢ P(SS,,) is Hhe ssme forsll T




Stationary Markov Chain (SMC)

Astationary Markov Chain : for all t >0
P(St+7| Sf)i-.-’Sf) — P(St+7lst) and MWKQV BSSUM‘OJ—IOV‘
P\(iﬂis the same S Vshowsv¥

We only need to specify P(5o>and PLS?H% / §t>

Simple Model, easy to specify <
Often the natural model <
The network can extend indefinitely &= \’\f(

¥riations of SMC are at the core of most Natural Langygg

Processing (NLP) applications! 6\39
PaqeRenK alge (=

NC\O szcg



Stationary Markov Chain (SMC)

A stationary Markov Chain : for all t >0
P(S,.| Sp-.8) = P(S..|S)and Koy 2350 phion
P(S,,|S) is the same s tshowev

So we only need to specify? bclicker.

_—
@St +7 |St) an@ B. P(So)

C = P(St +7|St) D- P<St|8t+7)




Stationary Markov—Chain: Example

Domain of variable S;is {t, g, p, a, h, €}

Probability of initial state P (S,)

Stochastic Transition Matrix
Which of these two is a possible STM?

St+l
tiglplalh|e
t|]0].3]/]0.3/.4]0
gl.4alo|6]0[0]|0
plojo|1]0|0]|o0O
St falolol4l6 00
hioO|O0O[O|O0|0]|1
e|ll1/ 0101010

i»clickenl

C . Both

St

w one on@

t .6
g 4
D @
a /eSS )
P(S..1S) h| °
e
St+1
tiglplalh|e
t]1/]0, 010|010
glof1]o]ofo]o
pl3/ol1]olo]o0
aOOOlOO@
hf0O| O|J]O0|0]|0]1
elo|ofo]2lo0]1]|2>>1
B. Right one only
D. None



Stationary Markov—Chain: Example

SIX Possible

Domain of variable S; is {t, q, p, a, h, €} valoes
We only need to specify:-* t| 6
q 4
P(S) 0| o
e e ey a S
Probability of initial state
h D
. L . e O
Stochastic Transition Matrix S g iy
tiglplalh|e
P(S:S) tjo[3[0]3[4][0]
—19/4/0]16]00 OGC(P(Stf’l\St :'C‘
__’_ P[0 0]1]0[0]0p(s, < 1)
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el 01000 O}|- -
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Markov—Chain: Inference
Probability of a sequence of states S, ... S

P(So,... 1) = P(5:) F(& f{gz AN
P (S,
?@")eéﬁ

Example:

P(t.d, p) =
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Recap: Markov Models
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Lecture Overview

Value of Information and Value of Control

Recap Markov Chain

Markov Decision Processes (MDPs)

* Formal Specification and example
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Markov Models

Markov Chains

NIAN'e

OQSWvﬂ’iov’tﬁ

. Hidden Markov Model

Partially Observable

Markov Decision
Processes (POMDPs)

—I " Markov Decision
Processes (MDPs)
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How can we deal with indefinite/infinite
Decision processes?

We make the same two assumptions we made for---.

The action outcome depends only on the current state Mavko v

Let S, be the state at time ¢ --- P(StJr’.L / S{,—/Ab /St,/ﬂ% - >

?Cgf-t—i ,gt /At
The process is stationary---

'HA@ Sye 7/—-9{3/01 t’

We also need a more flexible specification for the utility How?

* Defined based on a reward/punishment R(s)that the agent .

receives in each state s So Sq - -« ... 51/)
| /
ek Z Yo Yo - - ~—- r:/\
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MDP: formal specification

For an MDP you specify:
- set S of states and set Aof actions

* the process’ dynamics (or transition model)
P(St+,/5t, At)
* The reward function
R(s, a, s’)
describing the reward that the agent receives when it
performs action a in state s and ends up in state s’

* R(s)is used when the reward depends only on the state s and

not on how the agent got there
Z

 Absorbing/stopping/terminal state Ss

b
g[erz/’/l scham ?(Seb)& 555\ =71 K(gab 565)‘:0
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MDP graphical specification

Basically a MDP is a Markov Chain augmented with actions
and rewards/values

St \P“D w
dv\\ @
[
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When Rewards only depend on the state
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Summary Decision Processes: MDPs

d manage an ongoing (indefinite:** infinite) decision
process, we combine---.

Mo Xov CV\A\V&S b( Dewsioun
N etworKs

Markovian L ow

- /X‘»su"/\@/\o 2

Stationary @

Utility not just at‘

the end
RuT

Seqguence of
rewards

Fully Observable
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Example MDP: Scenario and Actions

e
-

L'0 10
1 START

L AR

Agent moves in the above grid via actions Up, Down, Left, Right
Each action has:

80

0.8 probability to reach its intended effect

0.1 probability to move at right angles of the intended direction
If the agents bumps into a wall, it stays there

How many states? /I /7 1%,

~

There are two terminal states (3,4) and (2,4)
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Example MDP: Rewards

; 7 =)
<< (=)

I HNE

1| s | R 7| Y

Ris) — —0.04 (small penalty) for nonterminal statesx
Y 4 for terminal states
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Learning Goals for today’ s class

You can:

Define and compute Value of Information and Value of
Control in a decision network

Effectively represent indefinite/infinite decision
processes with a Markov Decision Process (MDP)
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TODO for Mon

 assignment0 — Google Form

e Read textbook 9.4

* Read textbook 9.5
 9.5.1 Value of a Policy

 9.5.2 Value of an Optimal Policy
 9.5.3 Value Iteration
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Example MDP: Underlying info structures

Four actions Up, Down, Left Right

Eleven States: {(1,1), (1,2)-----

Sltch

(3,4)}

Table ¢ x 11| P(st%\SHAg
UP l\ljﬂ 2,1 7 3 Do l:- Q (}’
I/IT ,Lel \lowo ‘ '
(),_(\’//Z_O\J A _ O fg !,
MV"“"&“ CZ |
Sa i

ag—
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Example MDP: Sequence of actions

> )
{/

()
!
A

=]
Em
4%
S
0.1
LOJ%LO
80

1 START

1 2 3 4

The sequence of actions [Up, Up, Right, Right, Right ] will
take the agent in terminal state (3,4)?

A. always B. never C. Only sometimes
With what probability?
A. (0.8)° B. (0.8)°+ ((0.1)* x 0.8) C. ((0.1)* x 0.8)
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Example MDP: Sequence of actions

)
0.1 ( g

NSl

80 Y g

Can the sequence [Up, Up, Right Right Right ] take the
agent in terminal state (3,4)?

(. 3

Can the sequence reach the goal in any other way?
\\'\" ob
(D). g P Ues b
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MDPs: Policy

The robot needs to know what to do as the decision process
unfolds---

It starts in a state, selects an action, ends up in another state
selects another action---.

Needs to make the same decision over and over: Given the current
state what should I do?

So a policy for an MDPis a

single decision function J(s)
that specifies what the agent

should do for each state s 1
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