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Lecture Overview

Probabilistic Graphical models

• Recap Markov Networks

• Recap one application

• Inference in Markov Networks (Exact and Approx.)

• Conditional Random Fields



Parameterization of Markov Networks

CPSC 422, Lecture 17 Slide 3

Factors define the local interactions (like CPTs in Bnets)

What about the global model? What do you do with Bnets? 

X

X



How do we combine local models?
As in BNets by multiplying them!
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Step Back…. From structure to 
factors/potentials

In a Bnet the joint is factorized….
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In a Markov Network you have one factor for each 
maximal clique



General definitions

Two nodes in a Markov network are independent if 
and only if every path between them is cut off by 
evidence

So the markov blanket of a node is…?

eg for C

eg for A C
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Lecture Overview

Probabilistic Graphical models

• Recap Markov Networks

• Applications of Markov Networks

• Inference in Markov Networks (Exact and Approx.)

• Conditional Random Fields



Markov Networks Applications (1): Computer Vision

Called Markov Random Fields

• Stereo Reconstruction

• Image Segmentation

• Object recognition
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Typically pairwise MRF

• Each vars correspond to a pixel (or superpixel )

• Edges (factors) correspond to interactions between 
adjacent pixels in the image

• E.g., in segmentation: from generically penalize 
discontinuities, to road under car



Image segmentation
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Image segmentation
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Lecture Overview

Probabilistic Graphical models

• Recap Markov Networks

• Applications of Markov Networks

• Inference in Markov Networks (Exact and Approx.)

• Conditional Random Fields
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Variable elimination algorithm for Bnets

To compute P(Z| Y1=v1 ,… ,Yj=vj ) :

1. Construct a factor for each conditional probability.

2. Set the observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose sum of 
products

4. Perform products and sum out Zi

5. Multiply the remaining factors  Z

6. Normalize: divide the resulting factor f(Z) by Z f(Z) .

Variable elimination algorithm for Markov 
Networks…..

Given a network for P(Z, Y1,… ,Yj Z1,… ,Zi), :



Gibbs sampling for Markov Networks

Example: P(D | C=0)

Resample non-evidence variables in 
a pre-defined order or a random 
order

Suppose we begin with A

A

B C

D E

F

A B C D E F

1 0 0 1 1 0

Note: never change evidence!

What do we need to sample?

A.  P(A | B=0) B.  P(A | B=0, C=0) 

C. P( B=0, C=0| A) 
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Example: Gibbs sampling

Resample probability 
distribution of P(A|BC)

A

B C

D E

F

ϕ1

ϕ2 ϕ3

A=1 A=0

C=1 1 2

C=0 3 4

A=1 A=0

B=1 1 5

B=0 4.3 0.2A B C D E F

1 0 0 1 1 0

? 0 0 1 1 0

Φ1 × Φ2 × Φ3  = 
A=1 A=0

12.9 0.8

Normalized result = 
A=1 A=0

0.95 0.05
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B=0 ; C=0



Example: Gibbs sampling

Resample probability 
distribution of B given A D

A

B C

D E

F

ϕ1

ϕ2

ϕ4

D=1 D=0

B=1 1 2

B=0 2 1

A=1 A=0

B=1 1 5

B=0 4.3 0.2
A B C D E F

1 0 0 1 1 0

1 0 0 1 1 0

1 ? 0 1 1 0

Φ1 × Φ2 × Φ4  = 
B=1 B=0

1 8.6

Normalized result = 
B=1 B=0

0.11 0.89
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Lecture Overview

Probabilistic Graphical models

• Recap Markov Networks

• Applications of Markov Networks

• Inference in Markov Networks (Exact and Approx.)

• Conditional Random Fields



We want to model P(Y1| X1.. Xn)

• Which model is simpler, MN or BN?
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Y1

X1 X2 … Xn

Y1

X1 X2 … Xn

• Naturally aggregates the 
influence of different parents

… where all the Xi are always observed

MN BN



Conditional Random Fields (CRFs)

• Model P(Y1 .. Yk | X1.. Xn)

• Special case of Markov Networks where all the Xi

are always observed

• Simple case P(Y1| X1…Xn) 
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What are the Parameters?
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Let’s derive the probabilities we need
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}}1,1{exp{),( 11  YXwYX iiii

}}1{exp{)( 1010  YwY

Y1

X1 X2 … Xn



Let’s derive the probabilities we need
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}}1,1{exp{),( 11  YXwYX iiii

}}1{exp{)( 1010  YwY

Y1

X1 X2 … Xn



Let’s derive the probabilities we need
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}}1,1{exp{),( 11  YXwYX iiii

}}1{exp{)( 1010  YwY

Y1

X1 X2 … Xn

0



Let’s derive the probabilities we need
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Let’s derive the probabilities we need
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Sigmoid Function used in Logistic Regression

• Great practical interest

• Number of param wi is linear 
instead of exponential in the 
number of parents

• Natural model for many real-
world applications

• Naturally aggregates the 
influence of different parents
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Y1

X1 X2 … Xn

Y1

X1 X2 … Xn



Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF) 
aka naïve markov model 

Y

X1 X2
… Xn

• But only models the conditional distribution, P(Y | 
X ) and not the full joint P(X,Y )
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Naïve Bayes vs. Logistic Regression
Y

X1 X2
… Xn

Y

X1 X2

…

Xn

Naïve 
Bayes

Logistic
Regression (Naïve Markov)

Conditional

Generative

Discriminative
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Learning Goals for today’s class

You can:

• Perform Exact and Approx. Inference in Markov Networks

• Describe a few applications of Markov Networks

• Describe a natural parameterization for a Naïve Markov 

model (which is a simple CRF)

• Derive how P(Y|X) can be computed for a Naïve Markov 

model

• Explain the discriminative vs. generative distinction and its 

implications
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Next class Mon

Revise generative temporal models (HMM)To Do 

Linear-chain CRFs

• Go to Office Hours x

• Learning Goals (look at the end of the slides for each lecture 
– complete list ahs been posted)

• Revise all the clicker questions and practice exercises

• More practice material has been posted

• Check questions and answers on Piazza

Midterm, Wed, Oct 26, 
we will start at 9am sharp

How to prepare….
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Generative vs. Discriminative Models

Generative models (like Naïve Bayes): not directly designed  
to maximize performance on classification. They model the 
joint distribution P(X,Y).

Classification is then done using Bayesian inference 
But a generative model can also be used to perform any 

other inference task, e.g. P(X1 |  X2, …Xn, )
• “Jack of all trades, master of none.”

Discriminative models (like CRFs): specifically designed and 
trained to maximize performance of classification. They 
only model the conditional distribution P(Y | X ).

By focusing on modeling the conditional distribution, they 
generally perform better on classification than generative 
models when given a reasonable amount of training data.
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On Fri: Sequence Labeling

Y2

X1 X2
… XT

HMM

Linear-chain CRF

Conditional

Generative

Discriminative

Y1 YT

..

Y2

X1 X2
… XT

Y1 YT

..
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Lecture Overview

• Indicator function

• P(X,Y) vs. P(X|Y) and Naïve Bayes 

• Model P(Y|X) explicitly with Markov Networks

• Parameterization

• Inference

• Generative vs. Discriminative models



P(X,Y) vs. P(Y|X)

Assume that you always observe a set of variables 

X = {X1…Xn} 

and you want to predict one or more variables 

Y =  {Y1…Ym}

You can model  P(X,Y) and then infer P(Y|X) 
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P(X,Y) vs. P(Y|X)

With a Bnet we can represent a joint as the product of 
Conditional Probabilities

With a Markov Network we can represent a joint a the 
product of Factors
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We will see that Markov Network are also suitable for 
representing the conditional prob. P(Y|X) directly



Directed vs. Undirected
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Factorization



Naïve Bayesian Classifier P(Y,X)
A very simple and successful Bnets that allow to classify 

entities in a set of classes  Y1, given a set of features 
(X1…Xn)

Example: 

• Determine whether an email is spam (only two classes 
spam=T and spam=F)

• Useful attributes of an email ?

Assumptions
• The value of each attribute depends on the classification

• (Naïve) The attributes are independent of each other given the 
classification  

P(“bank” | “account” , spam=T) = P(“bank” | spam=T)
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Naïve Bayesian Classifier for  Email Spam

Email Spam

Email contains 
“free”

words

• What is the structure?

Email contains 
“money”

Email contains 
“ubc”

Email contains 
“midterm”

The corresponding Bnet represent : P(Y1, X1…Xn)

Slide 38
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Can we derive : P(Y1| X1…Xn) for any x1…xn

“free money for you now”

NB Classifier for  Email Spam: Usage

Email Spam

Email contains 
“free”

Email contains 
“money”

Email contains 
“ubc”

Email contains 
“midterm”

But you can also perform any other inference…
e.g., P(X1| X3       )

Slide 39CPSC 422,  Lecture 18



Can we derive : P(Y1| X1…Xn)

“free money for you now”

NB Classifier for  Email Spam: Usage

Email Spam

Email contains 
“free”

Email contains 
“money”

Email contains 
“ubc”

Email contains 
“midterm”

But you can perform also any other inference
e.g., P(X1| X3       )
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