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Lecture Overview

Probabilistic Graphical models

 Recap Markov Networks

 Recap one application

* Inference in Markov Networks (Exact and Approx.)
* Conditional Random Fields
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Parameterization of Markov Networks
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Factors define the local interactions (like CPTs in Bnets)
© Lr 18 In Bnets)
What about the global model? What do you do with Bnets?
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How do we combine local models?
As in BNets by multiplying them!

P(A,B,C,D ) = 61(4, B) x $2(B, C) x $3(C, D) x ¢u(4, D)
P(A,B,C,D @ P(A,B,C,D)
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Step Back---. From structure to

factors/potentials
In a Bnet the joint is factorized---.

In a Markov Network you have one factor for each
maximal clique




General definitions

Two nodes in a Markov network are independent if
and only if every path between them is cut off by
evidence




Lecture Overview

Probabilistic Graphical models

* Applications of Markov Networks
e Inference in Markov Networks (Exact and Approx.)
 Conditional Random Fields
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Markov Networks Applications (1): Computer Vision

N T TN ,f‘*xl

. (A} A (A3 —— A 4)

Called Markov Random Fields A R

* Stereo Reconstruction (o)1) (i)
e Image Segmentation

e Object recognition AN A A

. C Aur)—— (A (A —(A42)

Typically pairwise MRF YT

 Each vars correspond to a pixe/ (or superoixel)

 Edges (factors) correspond to interactions between
adjacent pixels in the image

e E.g, in segmentation: from generically penalize

discontinuities, to road under car
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Image segmentation
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Lecture Overview

Probabilistic Graphical models

e Inference in Markov Networks (Exact and Approx.)
 Conditional Random Fields
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Variable elimination algorithm for Bnets
Given a network for P(Z, Y, "= ,Y; Z,* ,.Z), :

To compute P(Z] Y,=v,,,Y~Vv,):
1. Construct a factor for each conditional probability.

2. Set the observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose sum of
products

4. Perform products and sum out Z,

. Multiply the remaining factors Z
6. Normalize: divide the resulting factor AZ) by ), AZ).

Variable elimination algorithm for Markov
Networks=--.._ ... @



Gibbs sampling for Markov Net
Example: P(D | C=0) Note: never change evidence!
Resample non—evidence variables in

a pre—defined order or a random

order
Suppose we begin with A

What do we need to sample? Q e
A. P(A | B=0) B. P(A | B=0, C=0) G

C. P(B=0, C=0| A) AlB|c|D|E|F
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Example: Gibbs sampling

Resample probability

distribution of P(A|BC)

B=0

- G=0
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B=T

B=0
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Example: Gibbs sampling

Resample probability

. . . . A=1
distribution of B given A D —
B=0 | 4.3
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Lecture Overview

Probabilistic Graphical models

 Conditional Random Fields
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We want to model P(Y,| X,.. X )

--- where all the X. are always observed
MN BN

Which model is simpler, MN or BN?

Naturally aggregates the ool
influence of different parents | el |
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Conditional Random Fields (CRFs)

e Model P(Y, .. Y, | X,.. X))

* Special case of Markov Networks where all the X
are always observed

* Simple case P(Y,| X,***X)
Al Vars dre L\V\gru‘

2
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What are the Parameters?
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Let’ s derive the probabilities we need
g, (X.,Y,) =exp{w «{X; =1Y, =1}} @
po(Yy) =exp{w Y, =13} G el X
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Let’ s derive the probabilities we need
¢i(xi’Y1) :exp{Wi ’ﬂ{xi :1’Y1 :1}} Q
po(Y,) =expfw, 1{Y, =1} & ...

BIY 1,60 %, ) ) = C?o(ﬂ%ﬂ‘ E§<X'~’Y‘)
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Let’ s derive the probabilities we need
¢i (Xi ’Yl) — eXp{Wi ’ﬂ{xi :1’Y1 :1}} Q
do(Y,) = exp{w, 11 {Y; =1}} CORCHPPNCS

B(Ye0,%0, 00 ) = 000 u
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)
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Let’ s derive the probabilities we need
I5(Y1:1’ Xl,....,Xn)=eXp(WO-I—ZWiXi) Q
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Sigmoid Function used |n Logistic Regression

Great practical interest

=3
Number of param w:is I

instead of &Bonenti@ the
number of parents

Natural model for many real-
world applications

Naturally aggregates the
influence of different parents
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Logistic Regression as a Markov Net (CRF)

Logistic regression is a simple Markov Net (a CRF)
aka naive markov model

But only models the conditional distribution, P( Y|
X ) and not the full joint P(X Y)
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Naive Bayes vs. Logistic Regression

Generative
Conditional

Discriminative

° Logistic
Regression (Naive Markov)
(x) () (%)

o0 o0
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Learning Goals for today’s class

>»YO0oU can:

« Perform Exact and Approx. Inference in Markov Networks
« Describe a few applications of Markov Networks

« Describe a natural parameterization for a Naive Markov
model (which is a simple CRF)

« Derive how P(Y|X) can be computed for a Naive Markov
model

« Explain the discriminative vs. generative distinction and its
Implications

CPSC 422, Lecture 18 Slide 29



Next class Mon Linear—chain CRFs

T0 DO Revise generative temporal models (HMM)

Midterm, Wed, Oct 26,
we will start at 9am sharp

How to prepare....

e Go to Office Hours

Learning Goals (look at the end of the slides for each lecture
— complete list ahs been posted)

Revise all the clicker questions and practice exercises
More practice material has been posted

Check questions and answers on Piazza
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Generative vs. Discriminative Models

Generative models (like NaTve Bayes): not directly designed
to maximize performance on classification. They model the
Joint distribution P(XY).

Classification is then done using Bayesian inference

But a generative model can also be used to perform any
other inference task, e.g. P(X, | X,, =" X )

111
Jack of all trades, master of none.”

Discriminative models (like CRFs): specifically designed and
trained to maximize performance of classification. They
only model the conditional distribution P(Y | X).

By focusing on modeling the conditional distribution, they
generally perform better on classification than generative
models when given a reasonable amount of training data.
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On Fri: Sequence Labeling

_> . . HMM
() () +++ ()
Generative
Conditional

Discriminative

—. | Linear-chain CRF
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Lecture Overview

Indicator function

P(X,Y) vs. P(X|Y) and Naive Bayes

Model P(Y|X) explicitly with Markov Networks
e Parameterization

e Inference

Generative vs. Discriminative models
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P(XY) vs. PCY|X)

Assume that you always observe a set of variables
X = {X1 ...Xn}

and you want to predict one or more variables

Y= {Y,Y,)

You can model P(XY) and then infer P(Y|X)
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P(X.Y) vs. PCY|X)

With a Bnet we can represent a joint as the product of
Conditional Probabilities

With a Markov Network we can represent a joint a the
product of Factors

We will see that Markov Network are also suitable for
representing the conditional prob. P(Y|X) directly
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Directed vs. Undirected

(a) (b)
G I P S
(A R(r (I e P B3 B

PC]Fn) B, B+ (D) 2P av)

Factorization
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Natve Bayesian Classifier P(Y,X)

A very simple and successful Bnets that allow to classify

entities in a set of classes Y, given a set of features
(X=X )

Example:

* Determine whether an email is spam (only two classes
span=T and span=F)

. : K,
Useful attributes of an email wovrd s

Assumptions

* The value of each attribute depends on the classification

* (Naive) The attributes are independent of each other given the
classification

P(“bank” | “account” , spam=T) = P(“bank” | spam=T)
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Naive Bayesian Classifier for Email Spam
The corresponding Bnet represent : P(Y1, X1:--Xn)

* What is the structure?
6’4 o\ 546

9( \\\
words % -
= mf" contz,i,ln Email contain Email contain
money “ubc” “midterm”

c Email contain$
\O

Slide 38
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NB Classifier for Email Spam: Usage

Can we derive : P(Y1|for any Xx;"*'X,

(11 ” 2/
free money for you now @ \
T

Email contain Email contain Zmail contain
“fl’ee”_ —~ “money” \ ccubc 7\ ~

K
X; )(L 5(’3 X

malil contain
“midterm”

But you can also perform any other inference--
e.g, POX | X; )
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NB Classifier for Email Spam: Usage

Can we derive : P(Y,| X=X )
~— S 4’(3
¢

(11 ”
free money for you now /ﬂ
s
/
Email contain Email containsy - Email contain
“free” —V “money”’= ¥ “ubc’=F

malil contain
“midterm=

But you can perform also any other inference
e.g., POX{| X; )
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