Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 16

Oct, 17, 2016

CPSC 422, Lecture 16

Lecture Overview

Probabilistic temporal Inferences

- Filtering
- Prediction
- Smoothing (forward-backward)
- Most Likely Sequence of States (Viterbi)
- Approx. Inference In Temporal Models (Particle Filtering)

Most Likely Sequence

Suppose that in the *rain* example we have the following *umbrella* observation sequence

[true, true, false, true, true]

> Is the most likely state sequence?

[rain, rain, no-rain, rain, rain]

In this case you may have guessed right… but if you have more states and/or more observations, with complex transition and observation models….

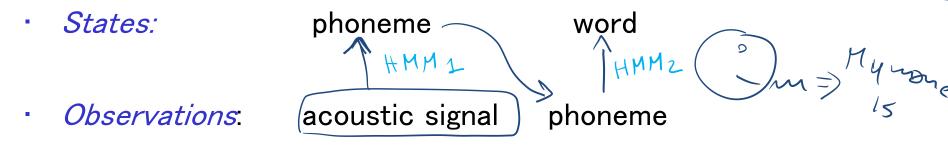
HMMs : most likely sequence (from 322)

Bioinformatics: Gene Finding

- *States:* coding / non-coding region
- *Observations:* DNA Sequences

XX VVVXX ATCGGAA

Natural Language Processing: e.g., Speech Recognition



For these problems the critical inference is:

find the most likely sequence of states given a sequence of observations

Part-of-Speech (PoS) Tagging

- Given a text in natural language, label (tag) each word with its syntactic category
 - E.g, Noun, verb, pronoun, preposition, adjective, adverb, article, conjunction

> Input

• Brainpower, not physical plant, is now a firm's chief asset.

Output

 Brainpower_NN ,__, not_RB physical_JJ plant_NN ,__, is_VBZ now_RB a_DT firm_NN 's_POS chief_JJ asset_NN .__.

Tag meanings

NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS (Possessive ending), . (sentence-final punctuation)

POS Tagging is very useful

- As a basis for **Parsing** in NL understanding
- Information Retrieval
 - ✓ Quickly finding names or other phrases for information extraction

✓ Select important words from documents (e.g., nouns)

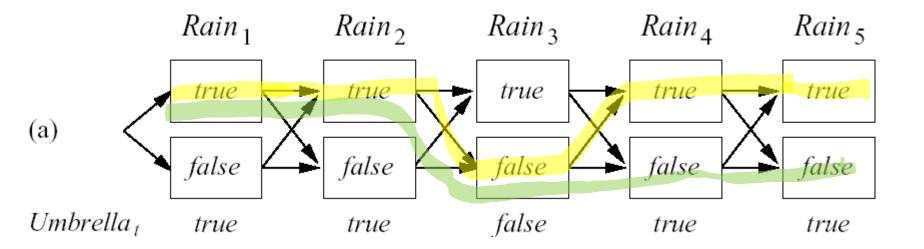
- Speech synthesis: Knowing PoS produce more natural pronunciations
 - E.g., Content (noun) vs. content (adjective); object (noun) vs. object (verb)

Most Likely Sequence (Explanation)

> Most Likely Sequence: $\operatorname{argmax}_{x_{1:T}} P(X_{1:T} | e_{1:T})$

≻ Idea

- find the most likely path to each state in X_T
- Rains= true Rains= false
- As for filtering etc. let's try to develop a recursive solution



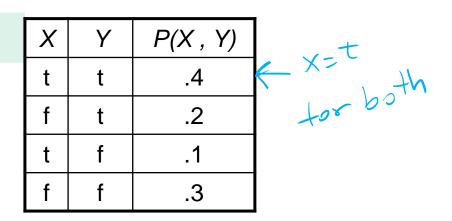
Joint vs. Conditional Prob

You have two binary random variables X and Y

 $\operatorname{argmax}_{x} P(X \mid Y=t)$? $\operatorname{argmax}_{x} P(X, Y=t)$

A. Different xB. Same x

C. It depends



i⊧clicker.

Most Likely Sequence: Formal Derivation > Most Likely Sequence: $\operatorname{argmax}_{x_1,T} P(X_{1:T} | e_{1:T})$

- $\succ = \operatorname{argmax}_{x_1,T} P(X_{1:T}, e_{1:T})$
- \blacktriangleright Let's focus on finding the prob. of the most likely path to state x_{t+1} with evidence $e_{1:t+1}$.

$$\max_{x_{1},...,x_{t}} P(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t+1}) = \max_{x_{1},...,x_{t}} P(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t},\mathbf{e}_{t+1}) = Cond. Prob$$

$$= \max_{x_{1},...,x_{t}} P(\mathbf{e}_{t+1}|\mathbf{e}_{1:t},\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1}) P(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = Markov Assumption/Indep.$$

$$= \max_{x_{1},...,x_{t}} P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) P(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = Cond. Prob$$

$$= \max_{x_{1},...,x_{t}} P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) P(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = Markov Assumption/Indep$$

$$= \max_{x_{1},...,x_{t}} P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) P(\mathbf{x}_{t+1}|\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) P(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) = Markov Assumption/Indep$$

$$= \max_{x_{1},...,x_{t}} P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) P(\mathbf{x}_{t+1}|\mathbf{x}_{t}) P(\mathbf{x}_{1},...,\mathbf{x}_{t},\mathbf{e}_{1:t}) = Markov Assumption/Indep$$

$$= \max_{x_{1},...,x_{t}} P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) P(\mathbf{x}_{t+1}|\mathbf{x}_{t}) P(\mathbf{x}_{1},...,\mathbf{x}_{t-1},\mathbf{x}_{t},\mathbf{e}_{1:t}) = Markov Assumption/Indep$$

$$= Markov Assumption/Indep$$

Intuition behind solution $\mathbf{P}(\mathbf{e}_{t+1} | \mathbf{x}_{t+1}) \max_{\mathbf{x}_{t}} (\mathbf{P}(\mathbf{x}_{t+1} | \mathbf{x}_{t}) \max_{\mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}, \mathbf{x}_{t}, \mathbf{e}_{1:t}))$ $\mathcal{C}_1 \mathcal{C}_2 \cdots \mathcal{C}_+$ prob. of most likely path to Szat th observing Ct+1 MLR S, O PLSI MLP, 52 prob. of the most likely path to state S', ofter obs elit CPSC 422, Lecture 16 Slide 10

$$\mathbf{P}(\mathbf{e_{t+1}} | \mathbf{x_{t+1}}) \max_{\mathbf{x_t}} (\mathbf{P}(\mathbf{x_{t+1}} | \mathbf{x_t}) \max_{\mathbf{x_1, \dots, x_{t-1}}} \mathbf{P}(\mathbf{x_1, \dots, x_{t, t}, e_{1:t}}))$$

The probability of the most likely path to S_2 at time t+1 is:

$$P(e_{t+1}|s_2) * m \ge \begin{pmatrix} P(s_2|s_1) * MLP_1 \\ P(s_2|s_2) * M \ge \chi \\ P(s_2|s_2) * MLP_2 \\ P(s_2|s_3) * MLP_3 \end{pmatrix}$$

Most Likely Sequence

Identical to filtering (notation warning: this is expressed for X_{t+1} instead of X_t, it does not make any difference!)

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$

max $x_1,...,x_t P(x_1,..., x_t, X_{t+1}, e_{1:t+1})$
= $P(e_{t+1} | X_{t+1}) \max_{x_t} P(X_{t+1} | x_t) \max_{x_1,...,x_{t-1}} P(x_1,..., x_{t-1}, x_t, e_{1:t})$

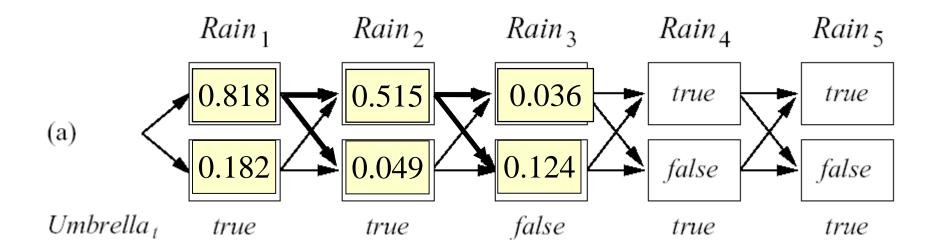
$$\mathbf{F} \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_{t} | \mathbf{e}_{1:t})$$
 is replaced by

- $\boldsymbol{m}_{1:t} = \max_{\mathbf{x}_1,...,\mathbf{x}_{t-1}} P(\mathbf{x}_1,...,\mathbf{x}_{t-1},\mathbf{X}_t,\mathbf{e}_{1:t})$ (*)
- the summation in the filtering equations is replaced by maximization in the most likely sequence equations

Rain Example • max $_{\mathbf{x_1},\ldots,\mathbf{x_t}} \mathbf{P}(\mathbf{x_1},\ldots,\mathbf{x_t},\mathbf{X_{t+1}},\mathbf{e_{1:t+1}}) \neq \mathbf{P}(\mathbf{e_{t+1}} \mid \mathbf{X_{t+1}}) \max_{\mathbf{x_t}} \left[(\mathbf{P}(\mathbf{X_{t+1}} \mid \mathbf{x_t}) \mid \mathbf{m_{1:t}}) \right]$ $m_{1:t} = \max_{x_1,...,x_{t-1}} P(x_1,...,x_{t-1},X_t,e_{1:t})$ Rain ₂ Rain₁ Rain₃ $Rain_{A}$ Rain 5 0.818 0.515 true true true (a) 0.182 0.049 false false false $Umbrella_t$ false true true true true what is the most likely way to end up in Rain=T lax [P(ralr.) * 0.010 Definition Rain=T or from Rain=F 7 • $m_{1:1}$ is just $P(R_1|u) = \langle 0.818, 0.182 \rangle$ $m_{1:2} =$ $P(u_2|R_2) \mod [P(r_2|r_1) * 0.818, P(r_2|r_1 r_1) 0.182], \max [P(r_2|r_1) * 0.818, P(r_2|r_1 r_1) 0.182] =$ $= \langle 0.9, 0.2 \rangle \langle \max(0.7*0.818, 0.3*0.182), \max(0.3*0.818, 0.7*0.182) \rangle$ =<0.9,0.2>*<0.573, 0.245>=<0.515, 0.049>

CPSC 422, Lecture 16

Rain Example

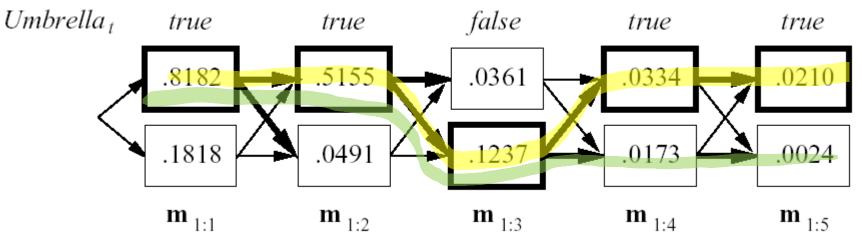


m _{1:3} =

 $\begin{aligned} \mathbf{P}(\mathbf{y} | \mathbf{u}_{3} | \mathbf{R}_{3}) &< \max \left[\mathbf{P}(\mathbf{r}_{3} | \mathbf{r}_{2}) * 0.515, \mathbf{P}(\mathbf{r}_{3} | \mathbf{y}_{2}) * 0.049 \right], \max \left[\mathbf{P}(\mathbf{y} | \mathbf{r}_{3} | \mathbf{r}_{2}) * 0.515, \mathbf{P}(\mathbf{y} | \mathbf{r}_{3} | \mathbf{r}_{2}) 0.049 \right] \\ &= <0.1, 0.8 > <\max(0.7 * 0.515, 0.3 * 0.049), \max(0.3 * 0.515, 0.7 * 0.049) = \\ &= <0.1, 0.8 > * <0.36, 0.155 > = <0.036, 0.124 > \end{aligned}$

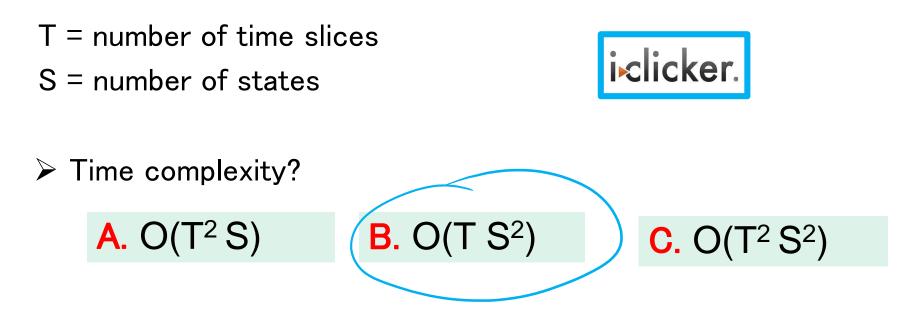
Viterbi Algorithm

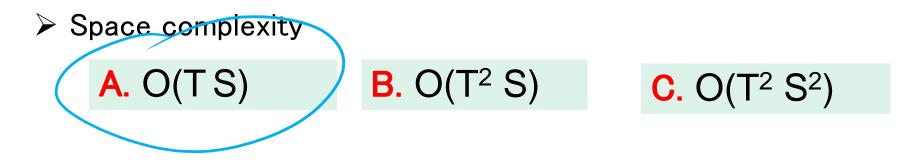
- > Computes the most likely sequence to X_{t+1} by
 - running forward along the sequence
 - computing the *m* message at each time step
 - Keep back pointers to states that maximize the function
 - in the end the message has the prob. Of the most likely sequence to each of the final states
 - we can pick the most likely one and build the path by retracing the back pointers



CPSC 422, Lecture 16

Viterbi Algorithm: Complexity





Lecture Overview

Probabilistic temporal Inferences

- Filtering
- Prediction
- Smoothing (forward-backward)
- Most Likely Sequence of States (Viterbi)
- Approx. Inference In Temporal Models (Particle Filtering)

Limitations of Exact Algorithms

- HMM has very large number of states
- Our temporal model is a Dynamic Belief Network with several "state" variables

Exact algorithms do not scale up ③ *What to do?*

Approximate Inference

Basic idea:

- Draw N samples from known prob. distributions
- Use those samples to estimate unknown prob. distributions

Why sample?

 Inference: getting N samples is faster than computing the right answer (e.g. with Filtering)

Simple but Powerful Approach: Particle Filtering

Idea from Exact Filtering: should be able to compute $P(X_{t+1} | e_{1:t+1})$ from $P(X_t | e_{1:t})$

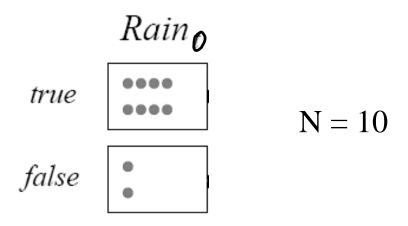
".. One slice from the previous slice..."

Idea from Likelihood Weighting

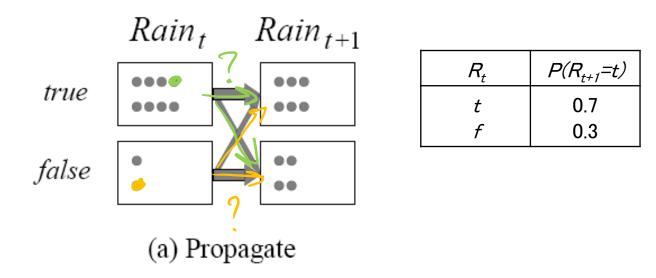
 Samples should be weighted by the probability of evidence given parents

New Idea: run multiple samples simultaneously through the network

- Run all **N samples together** through the network, one slice at a time
- **STEP 0**: Generate a population on N initial-state samples by sampling from initial state distribution $P(X_0)$

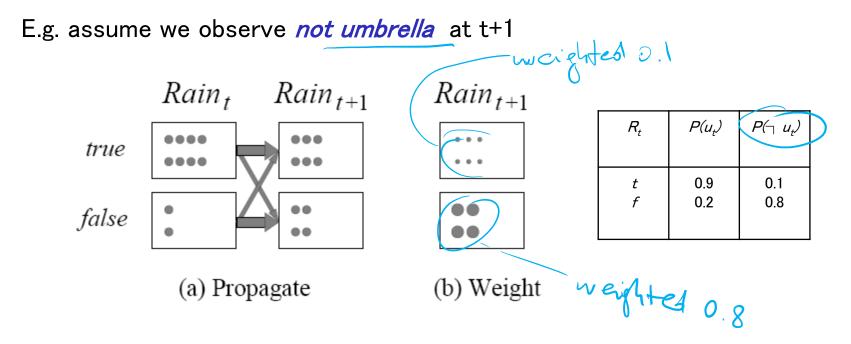


STEP 1: Propagate each sample for x_t forward by sampling the next state value x_{t+1} based on $P(X_{t+1}|X_t)$

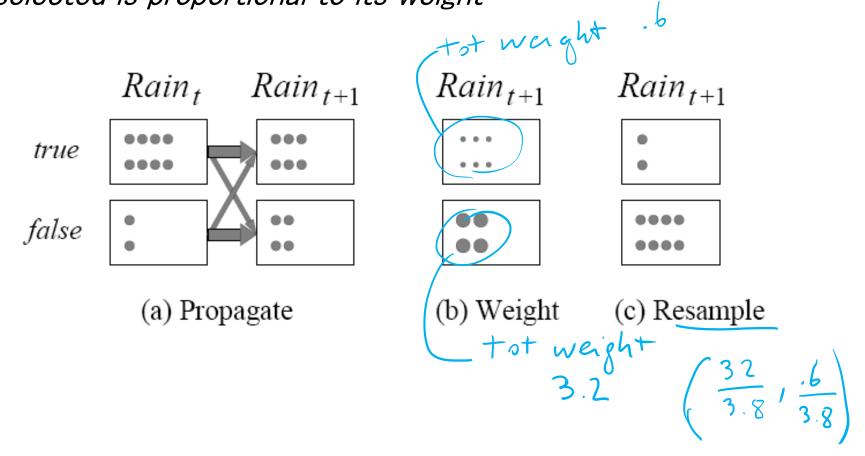


STEP 2: Weight each sample by the likelihood it assigns to the evidence

•



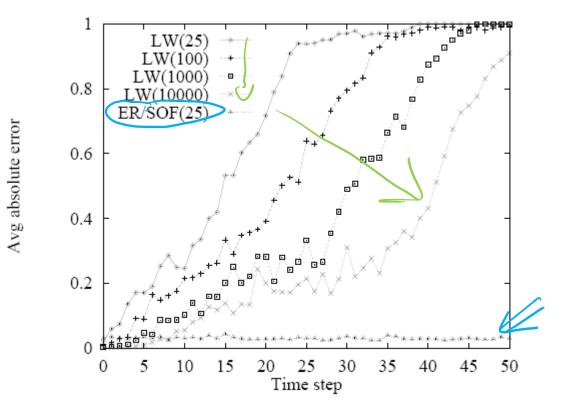
STEP 3: Create a new population from the population at $X_{t+1, i.e.}$ resample the population so that the probability that each sample is selected is proportional to its weight



Start the Particle Filtering cycle again from the new sample

Is PF Efficient?

In practice, approximation error of particle filtering remains bounded overtime



It is also possible to prove that the approximation maintains bounded error with high probability

(with specific assumption: probs in transition and sensor models >0 and <1)

422 big picture: Where are we?

StarAI (statistical relational AI)

Hybrid: Det +Sto Prob CFG Prob Relational Models Markov Logics

	Deterministic	Stochastic Markov	Logics
Query	Logics First Order Logics Ontologies Temporal rep. • Full Resolution • SAT	Belief Nets Approx. : Gibbs Markov Chains and HMMs Forward, Viterbi···. Approx. : Particle Filtering Undirected Graphical Models Markov Networks Conditional Random Fields	
Planning	g	Markov Decision Processes and Partially Observable MDP • Value Iteration • Approx. Inference	Representation
Γ		Reinforcement Learning	Representation
	Applications of AI		Reasoning Technique

Learning Goals for today's class

≻You can:

- Describe the problem of finding the most likely sequence of states (given a sequence of observations), derive its solution (Viterbi algorithm) by manipulating probabilities and applying it to a temporal model
- Describe and apply Particle Filtering for approx. inference in temporal models.

TODO for Wed

• Keep working on Assignment-2: RL, Approx. Inference in BN, Temporal Models - due Oct 21

Midterm Wed Oct 26

 Practice questions have been posted on Connect