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Lecture Overview

Probabilistic temporal Inferences

• Filtering

• Prediction

• Smoothing (forward-backward)

• Most Likely Sequence of States (Viterbi)



Smoothing 

 Smoothing: Compute the posterior distribution over a past
state given all evidence to date

• P(Xk | e0:t ) for 1 ≤ k < t

E0

 To revise your estimates in the past based on more recent 
evidence



Smoothing 

 P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using… 

= α P(Xk | e0:k ) P(ek+1:t | Xk)  using…

backward message, 

b k+1:t

computed by a recursive process 

that runs backwards from t

forward message from 

filtering up to state k, 

f 0:k

A. Bayes Rule

B. Cond. Independence

C. Product Rule



Smoothing 

 P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using Bayes Rule

= α P(Xk | e0:k ) P(ek+1:t | Xk) By Markov assumption on evidence

backward message, 

b k+1:t

computed by a recursive process 

that runs backwards from t

forward message from 

filtering up to state k, 

f 0:k



Backward Message 

P(ek+1:t | Xk) = ∑xk+1
P(ek+1:t , xk+1 | Xk) = ∑xk+1

P(ek+1:t |xk+1 , Xk) P( xk+1 | Xk) =

= ∑xk+1
P(ek+1:t |xk+1 ) P( xk+1 | Xk) by Markov assumption on evidence

= ∑xk+1
P(ek+1,ek+2:t |xk+1 ) P( xk+1 | Xk) 

= ∑xk+1
P(ek+1|xk+1 , ek+2:t) P(ek+2:t |xk+1 ) P( xk+1 | Xk)

= ∑xk+1
P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) P( xk+1 | Xk)

sensor 

model
transition modelrecursive call

 In message notation

bk+1:t  = BACKWARD (bk+2:t, ek+1)

Product 

Rule

because ek+1 and ek+2:t, are 

conditionally independent 

given xk+1

Product 

Rule



More Intuitive Interpretation (Example with three states)
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P(ek+1:t | Xk) =  ∑xk+1
P( xk+1 | Xk)P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) 



Forward-Backward Procedure 
 Thus, 

• P(Xk | e0:t) = α f0:k bk+1:t

and this value can be computed by recursion through time, 
running forward from 0 to k and backwards from t to k+1



How is it Backward initialized?

 The backwards phase is initialized with making an unspecified 
observation et+1 at  t+ 1……

bt+1:t  = P(et+1| Xt ) = P( unspecified | Xt ) = ?

A.   0 B.   0.5 C. 1



How is it Backward initialized?

 You will observe something for sure! It is only when you put 
some constraints on the observations that the probability 
becomes less than 1

 The backwards phase is initialized with making an unspecified 
observation et+1 at  t+ 1……

bt+1:t  = P(et+1| Xt ) = P( unspecified | Xt ) = 1



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

 Let’s compute the probability of rain at t = 1, given umbrella observations at t=1 

and t =2

 From P(Xk | e1:t)  = α P(Xk | e1:k ) P(ek+1:t | Xk)  we have 

P(R1| e1:2) = P(R1| u1:u2) = α P(R1| u1) P(u2 | R1) 

 P(R1| u1) = <0.818, 0.182>  as it is the filtering to t =1 that we did in lecture 14

TRUE     0.5

FALSE   0.5

0.5

0.5
0.818

0.182

backward message for propagating evidence 

backward from time 2

forward message from filtering up 

to state 1



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

 From P(ek+1:t | Xk)  = ∑xk+1
P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) P( xk+1 | Xk) 

 P(u2 | R1) = ∑ P(u2|r ) P(|r ) P( r | R1) = 

 P(u2|r2 ) P(|r2 ) <P( r2 | r1), P( r2 | ┐r1) > + 

P(u2| ┐r2 ) P(| ┐r2 ) <P(┐r2 | r1), P(┐r2 | ┐r1)>

=  (0.9 * 1 * <0.7,0.3>) + (0.2 * 1 * <0.3, 0.7>) = <0.69,0.41>

Thus 

 α P(R1| u1) P(u2 | R1) = α<0.818, 0.182> * <0.69, 0.41> ~ <0.883, 0.117>

TRUE     0.5

FALSE   0.5

0.5

0.5

0.818

0.182
0.69

0.41

0.883

0.117

Term corresponding to the Fictitious 

unspecified observation sequence e3:2
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Lecture Overview

Probabilistic temporal Inferences

• Filtering

• Prediction

• Smoothing (forward-backward)

• Most Likely Sequence of States (Viterbi)



Most Likely Sequence 

 Suppose that in the rain example we have the following umbrella
observation sequence

[true, true, false, true, true]

 Is the most likely state sequence?

[rain, rain, no-rain, rain, rain]

 In this case you may have guessed right… but if you have more 
states and/or more observations, with complex transition and 
observation models…..



CPSC 322, Lecture 32 Slide 18

HMMs : most likely sequence (from 322)

Natural Language Processing: e.g., Speech Recognition

• States: phoneme \ word

• Observations:      acoustic signal  \ phoneme

Bioinformatics: Gene Finding

• States: coding / non-coding region

• Observations: DNA Sequences

For these problems the critical inference is: 

find the most likely sequence of states given a 
sequence of observations 



Part-of-Speech (PoS) Tagging
 Given a text in natural language, label (tag) each word with its 

syntactic category 

• E.g, Noun, verb, pronoun, preposition, adjective, adverb, article, 
conjunction

 Input

• Brainpower, not physical plant, is now a firm's chief asset.

 Output

• Brainpower_NN ,_, not_RB physical_JJ plant_NN ,_, is_VBZ
now_RB a_DT firm_NN 's_POS chief_JJ asset_NN ._.

Tag meanings

 NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or 
mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS 
(Possessive ending),  . (sentence-final punctuation)



POS Tagging is very useful

• As a basis for parsing in NL understanding

• Information Retrieval

Quickly finding names or other phrases for information extraction

Select important words from documents (e.g., nouns)

• Word-sense disambiguation

 I made her duck (how many meanings does this sentence have)?

• Speech synthesis: Knowing PoS produce more natural 
pronunciations 

E.g,. Content (noun) vs. content (adjective);  object (noun) vs. 
object (verb)



Most Likely Sequence (Explanation) 

 Most Likely Sequence: argmaxx1:T
P(X1:T | e1:T)

 Idea

• find the most likely path to each state in XT

• As for  filtering etc. we will develop a recursive solution



Most Likely Sequence (Explanation) 

 Most Likely Sequence: argmaxx1:T
P(X1:T | e1:T)

 Idea

• find the most likely path to each state in XT

• As for  filtering etc. let’s try to develop a recursive solution
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Joint vs. Conditional Prob
 You have two binary random variables X and Y 

C. It depends

A.  Always equal

argmaxx P(X | Y=t) ? argmaxx P(X , Y=t)

X Y P(X , Y)

t t .4

f t .2

t f .1

f f .3

B.  Always different



Most Likely Sequence: Formal Derivation 

 Let’s focus on finding the prob. of the most likely path to state xt+1 with evidence 

e1:t+1. 

max x1,...xt
P(x1,.... xt ,xt+1, e1:t+1)= max x1,...xt

P(x1,.... xt ,xt+1,e1:t, et+1)=

= max x1,...xt
P(et+1|e1:t, x1,.... xt ,xt+1) P(x1,.... xt ,xt+1,e1:t)=

= max x1,...xt
P(et+1|xt+1) P(x1,.... xt ,xt+1,e1:t)=

= max x1,...xt
P(et+1|xt+1) P(xt+1| x1,.... xt , e1:t)P(x1,.... xt , e1:t)=

= max x1,...xt
P(et+1 |xt+1) P(xt+1|xt) P(x1,.... xt-1 ,xt, e1:t) =

Markov Assumption/Indep.

Markov Assumption/Indep
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Cond. Prob

Cond. Prob

P(et+1 |xt+1) max xt
(P(xt+1|xt) max x1,...xt-1

P(x1,.... xt-1 ,xt, e1:t)) 

 Most Likely Sequence: argmaxx1:T
P(X1:T | e1:T)

 => argmaxx1:T
P(X1:T , e1:T)
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Learning Goals for today’s class

You can:

• Describe the smoothing problem and derive a solution by 

manipulating probabilities

• Describe the problem of finding the most likely sequence 

of states (given a sequence of observations)

• Derive recursive solution (if time)
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TODO for Mon

• Keep working on Assignment-2: new due date 
Fri Oct 21

• Midterm : October 26


