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| ecture Overview

Recap with Example
— Marginalization

— Conditional Probability
— Chain Rule 2

Bayes' Rule &
Marginal Independence
Conditional Independence @
our most basic and robust form of knowledge
about uncertain environments.



Recap Joint Distribution
K=" H= Hlise
*3 binary random va%ble/s:/P/(H,S,F)
— H dom(H)={h, —h} has heart disease, does not have...
— S dom(S)={s, =s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet



Recap Joint Distribution
\Toimt P(‘O\O. Blgi’ﬁ‘oud"ow (:S‘.Pb>

-3 binary random variables: P(H,S,F)

— H dom(H)={h, —h} has heart disease, does not have...
— S dom(S)={s, —s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet
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Recap Marginalization
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Recap Conditional Probability

P(H,S _ P(H VIR
HS) s s (H) P(S [H) P(S,H)
h| .02 | .01 | .03 — \_P(H)
~——_ —
~h [ €28)] .69 L’é? @
P(S) 30 .70 Plslah).
N\a?\a\\:\ F’G ,’l>
Lk .Pboxwo”
y é/\«(\)(o(e
——p | .666 | .333 <\
29 ) 71 |72 ) DR
% :|_h . ), . A &(&(O\.SQ
< °




Recap Conditional Probability (cont.)
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Two key points we covered in the previous Iectur*e

* We derived this equality from a possible world
semantics of probability

. Itis not a probability distributions but, ¢ o
/7 F\fo‘ov &sik'ﬂ\o.

* One for each configuration of the conditioning var(s)j
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Recap Chain Rule
P(H,S,F)= P(H) & P(s| )% F(F|w5)
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| ecture Overview

* Recap with Example and Bayes Theorem

* Marginal Independence

« Conditional Independence



Do you always need to revise your beliefs?

NO. when your knowledge of Y's value doesn’t affect your belief
In the value of X

—

DEF. Randam variable X is marginal independent of random
variable Y If, for all x; e dom(X), y, € dom(Y),

P( X=X | Y=Yy, = P(X=X;)




Marginal Independence: Example

:

X and Y are independent iff;\P(x>: @(x \\(B _ P );.(\( >
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NV Y J
[POXY) [POY) o PCYX) = P(Y]  of P(X, ¥) = P(X) P(Y)

That iIs new evidence Y (or X) does not affect current belief

in X (or Y) U )da“”% e
Ex: — P({Toothache, Catch, Cavity, Weather) St
= P(Toothache, Catch, Cavity)‘ [P(W@&M Bj 1
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In our example are Smoking and Heart Disease
marginally Independent ?

What our probabilities are telling us....?
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| ecture Overview

* Recap with Example

« Marginal Independence

« Conditional Independence



Conditional Independence

With marg. Independence, for n independent
‘random vars, O(2") — O[,,\

C(xa ... 3 (é(¢ X - S(P()(>

Absolute independence is powerful but when you

Dentistry Is a Iarge field Wlth hundreds of
variables, few of which are independent
(e.g.,Cavity, Heart-disease).

What to do?



Look for weaker form of independence

P(Toothache, Cavity, Catch)
EED,

Are Toothache and/Catch marginally independent?
PV | Y D = P(letarke ) TNO

BUT If (have a cavity, does the probability that the probe
catches depend on whether | have a toothache? NO

(1) P(catch | too*ache, cavity) = ?(cﬂ‘cb. \ <> VLJﬂ}

What if | haven't got a cavity?
(2) P(catch | toothache,—cavity) = Plcatcls \ L CM“L“]\

 Each is directly caused by the cavity, but neither
has a direct effect on the other




Conditional independence

* In general, Catch is conditionally independent of Toothache

given Cavity:

@ P(Catch | Toothache,Cavity) = P(Catch | Cavity)

<
« Equivalent statements:

@ P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

@ P(Toothache, Catch | Cavity) =
P(Toothache | Cavity) P(Catch | Cavity)

?(x, A = PCKF F(%Z




Proof of equivalent statements
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Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally
Independent. However, they become independent
after we observe some third variable

DEF. Random variable X is conditionally independent of
random variable Y given random variable Z if, for all
X; € dom(X), y, € dom(Y), z,, € dom(Z)
P(X=x [ Y=y, Z2=2,)=PX=x|Z=2z,)
That is, knowledge of Y's value doesn’t affect your
belief in the value of X, given a value of Z



Conditional independence: Use

« Write out full joint distribution using chain rule:
(AP(Cavity, Catch, 'molhach@
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

7

:LP(Toothache | <am+u! ) Iﬂi@}\tch | Cavity), P(Cavity)

2 - 2 1
how many probabilities? 27 -1= 1
2 +2+1 =5

« The use of conditional independence often reduces the size of
the representation of the joint distribution from exponential in n
to linear in n. What is n? # o vsrs

« Conditional independence is our most basic and robus%
form of knowledge about uncertain environments.



Conditional Independence Example 2

« Given whether there is/isn’t power in wire w0, is °
whether light |1 is lit or not, independent of the
position of switch s2?
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Conditional Independence Example 3

 |s every other variable in the system independent’
of whether light 11 is lit, given whether there Is
power in wire w0 ?




Learning Goals for today’s class

YOou can:
Derive the Bayes Rule

Define and use Marginal Independence

Define and use Conditional Independence

CPSC 322, Lecture 4 Slide 22



Where are we? (Summary)
Probabillity is a rigorous formalism for uncertain
knowledge

/=
Joint probabillity distribution specifies probability of
every possible world

Queries can be answered by summing over
possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional ="
Independence (frequent) provide the tools



Next Class

« Bayesian Networks (Chpt 6.3)

Start working on assignments3 |



