Reasoning under Uncertainty:
Marginalization, Conditional Prob., and
Bayes

Computer Science cpsc322, Lecture 25

(Textbook Chpt 6.1.3.1-2)

June, 13, 2017
1%



| ecture Overview

—Recap Semantics of Probability<—
—Marginalization <

g&/

/\/—\-———\__\

£



Recap: Possible World Semantics

o for Probabilities |
Probability i1s a formal measure of subjective uncertainty.

 Random variable and probability distribution
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Joint Distribution and Marginalization
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Joint Distribution and Marginalization
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Joint Distribution and Marginalization
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Why is it called Marginalization?
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| ecture Overview

— Conditional Probability
—Chain Rule



Conditioning
(Conditional Probability)

We model our environment with a set of random
variables.

Assume have the joint, we can compute the
probability of... a4 for o

Are we done with reasoning under uncertainty?

What can happen?

Think of a patient showing up at the dentist office.
Does she have a cavity?




Conditioning
(Conditional Probability)

Probabillistic conditioning specifies how to reV|se
beliefs based on new mformatlon

You build a probabilistic model (for now the joint)
taking all background information into account. This

gives the prior probability.

All other information must be conditioned on.

Ifl evidence e € is all of the information obtained
subsequently, the conditional probability P(hle) of h
given e Is the posterior probability of h.
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Conditioning Example

* Prior probabllity of having a cavity
P(cavity = T)

« Should be revised if you know that there is toothache
P(cavity = T | toothache = T)
/!
* It should be revised again if you were informed that
the probe did not catch anything
P(cavity =T | toothache =T, catch = F)

« What about ?
P(cavity =T | sunny = T)




How can we compute P(h|e)
« What happens in term of possible worlds if we know

the value of a random var (or a set of random vars)?
« Some worlds are rv.led . The other become ....
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How can we compute P(h|e)
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wEh
P(toothache = F [cavity =T) = > s iy (W)
W toothache=F
cavity toothache catch H(W) p‘cavity:T (W)
T T T .108 Sk
T T F 012 . 0O
T F T 072 74
T F F .008 . 02’»
= | T 016 O
—F T E .064 ©
_F E T 144 O
—F F F 576 ®,




Semantics of Conditional Probability
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Semantics of Conditional Prob.: Example
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Conditional Probability among Random

Variables

P(XTY) =P, Y)/P(Y)
P(X | Y) = P(toothache | cavity) 3
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Product Rule

 Definition of conditional probability:
—P(X | X5) =P(X{, X5) / P(Xz)f/
* Product rule gives an alternative, more intuitive
formulation:
- P(Xy, XZ) :kP(Xz) P(X; | 2\(2) = P(Xp) P(X, | X))~
] A=

* Product rule general form:
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Chain Rule

* Product rule general form:
P(Xy, ...,.X,) =
= P(Xq,..0r X)) PKigqenn X | Xq,00 X))

« Chain rule is derived by successive application of
product rule fon-)
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Chain Rule: Example

P(cavity , toothache, catch) =
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In how many other ways can this joint be decomposed

using the chain rule?



Chain Rule: Example

P(cavity , toothache, catch) =
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| ecture Overview

—Bayes' Rule
—Independence



Using conditional probability

« Often you have causal knowledge (forward from cause to evidence):
— For example
v P(symptom | disease)
v P(light is off | status of switches and switch positions)
v P(alarm | fire)
— In general: P(evidence e | hypothesis h)

e ... and you want to do evidential reasoning (backwards from evidence
to cause):

— For example
v P(disease | symptom)
v P(status of switches | light is off and switch positions)
v P(fire | alarm)

— In general: P(hypothesis h | evidence e)



Bayes Rule

By definition, we know that :

P(h|e) = P(Ft‘(g)e) P(e|h)=

We can rearrange terms to write
P(hae)=P(h|e)xP(e) (1)

P(eah)=P(e|h)xP(h) (2)
But
P(hae)=P(eah) (3)

From (1) (2) and (3) we can derive

Bayes Rule
P(e[h)P(h)

P(h|e) = P(e)

(3)

P(e A h)
P(h)




Example for Bayes rule
Trob of ""hgiwgy

On average, the alarm rings once a year _ S d - 7

- P(alarm) =72
If there is a fire, the alarm will almost always ring

On average, we have a fire every 10 years

The fire alarm rings. What is the probability there is a fire?



Example for Bayes rule

- P(alarm|fire) = 0.999

On average, the alarm rings once a year
- P(alarm) =1/365

— Take a few minutes to do the math!

A. 0.999

B.0.9

C. 0.0999

On average, we have a fire every 10 years
- P(fire) =1/3650

P(hle)=

If there is a fire, the alarm will almost always ring

The fire alarm rings. What is the probability there is a fire?

P(e[h)P(h)
P(e)

D.

0.1




Example for Bayes rule

On average, the alarm rings once a year
- P(alarm) =1/365

If there is a fire, the alarm will almost always ring
- P(alarm|fire) = 0.999

On average, we have a fire every 10 years
- P(fire) =1/3650

The fire alarm rings. What is the probability there is a fire?

P(alarm|fire)xP(fire) _ 0.999 X 1/3650

P(alarm) 1/365 =0.0999

P(fire|alarm) =

— Even though the alarm rings the chance for a fire is only about 10%!



Learning Goals for today’s class

YOUu can:

Given a joint, compute distributions over any
subset of the variables

Prove the formula to compute P(h|e)

Derive the Chain Rule and the Bayes Rule

CPSC 322, Lecture 4 Slide 27



Next Class

* Marginal Independence
« Conditional Independence

Assignments
* Assignment 3 has been posted : due jone 20th



Plan for this week

Probability 1s a rigorous formalism for uncertain
knowledge

Joint probabillity distribution specifies probability of
every possible world

Probabilistic queries can be answered by summing
over possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional
Independence (frequent) provide the tools



Conditional probability
(irrelevant evidence)

 New evidence may be irrelevant, allowing
simplification, e.g.,
— P(cavity | toothache, sunny) = P(cavity | toothache)

— We say that Cavity Is conditionally independent from
Weather (more on this next class)

« This kind of inference, sanctioned by domain
knowledge, is crucial in probabilistic inference



