Stochastic Local Search

Computer Science cpsc322, Lecture 15

(Textbook Chpt 4.8)

May, 30, 2017

CPSC 322, Lecture 15 Slide 1

Lecture Overview

- Recap Local Search in CSPs

&

CPSC 322, Lecture 15 Slide 2

Local Search: Summary

A useful method in practice for large CSPs
Start from a possible world ~ (randowly cho 5W>

'/9enerate some neighbors (“similar’ possible worlds)
/ . D/ : , |
6(3 O[AHe/f .Fx(‘ovv\ cn Crevit (\Doss. WITdZN OV\\‘“I (Ob‘ one varshle's

valve

Move from current node to a neighbor, selected to
_minimize/maximize a scoring function which combines:
v’ Info about how many constraints are violated/satisfied

v’ Information about the cost/quality of the solution (you want the
best solution, not just a solution)

CPSC 322, Lecture 15 Slide 3

0 o 'S —
° © (-
P Y e) h
9]) _ -
i+ ¢ o - =~
2 9 »~
p o . - -
(_
N —
;o —_— —
|

/
CPSC 322, Lecture 15 Slide 4

Hill Climbing

NOTE: Everything that will be said for Hill Climbing
Is also true for Greedy Descent

eveluation ¢ SC&r;MX

Curcent ot "’A,
3 =4

e

mjghbors

Tuwo vavs

>< | = N nt Lf | A H{{ff‘/POSSlble wo\f|¢ scor@ X’)— <
—_ b ‘]:' - ' ‘> dSsvwe AOM);"\
R2s =2 "’“]"Xf""[oﬂ‘/l“'J

=

<7
“i v vee, Lustaie v Slide 5

Problems with Hill Climbing

ocal Maxima.

Plateau — Shoulders

ob_icctivifunction

global maximum

/

A

shoulder
“) local maximum
Y
"flat" local maximum
(Plateau)
> #=state space
cunent — RN
X={9#:2,

state

In higher dimensions==---".

E.g., Ridges — sequence of local maxima not
directly connected to each other

From each local maximum you can only

go downhill

CPSC 322, Lecture 5 Slide 7

Corresponding problem for GreedyDescent

Local minimum example: 8—queens problem
va o . \/q.~ -~ Vp

CPSC 322, Lecture 5 Slide 8

Lecture Overview

- Stochastic Local Search (SLS)

CPSC 322, Lecture 15 Slide 9

Stochastic Local Search

GOAL: We want our local search
* to be guided by the scoring function

Not to get stuck in local maxima/minima, plateaus etc.

SOLUTION: We can alternate

a) Hill-climbing steps
b) Random steps: move to a random neighbor.
c) Random restart: reassign random values to all variables.

sé\’wv\d 9\3 wove To Ny whach
>< < 2 —> \WIprovesS Scorin
e | &
/—L) A—UV\CJ’\ o)

= b> select n, raV\o‘oW‘,"‘
—> <) guwp To 5 candom

l/lK CPSC 322, Lecture 15 P@SS~ WO‘(\O\ Slide 10

'4,\)
)

Which randomized method would work best in each of
these two search spaces?

E\%aluation function X Evaluati'i)n function Y
\/\1) ﬂ
\ ;Hff bclicker.
R wa X
State Space (1 variable) State Space
(1 variable)

A. Greedy descent with random steps best on X
Greedy descent with random restart best on Y

B. Greedy descent with random steps beston Y
Greedy descent with random restart best on X

C. The two methods are equivalent on X andY

Which randomized method would work best in each of
the these two search spaces?

Evaluation function Evaluation function
A A $ B
o (1vari State Spac
State Space (1 variable) ate space

le)

« But these examples are simplified extreme cases for illustration
- In practice, you don’t know what your search space looks like

« Usually integrating both kinds of randomization works best

Random Steps (Walk)

Let’ s assume that neighbors are generated as
assignments that differ in one variable’s value

How many neighbors there are given n variables with domaln

with d vaIues”

n Co—’]>

One strategy to add randomness to the
selection of he variable—value p,éll’
Sometimes choose the pair

L According to the scoring functj on 1
“ A random one &= :
E.G in 8—queen es 4
S

e How many neighbors?
o /)~ cehgose gne ok the c .vcled oneés

| wot €
2 chopse vaudowm 1oue o) M. S4
CPSC 322, Lecture 5

“g \,\Gb

e ver
Va \/2 V3 VL,—\/5V£ Vj \/7

18

16

14

14

14

18

17

15

W

18

17

13

15

14

14-

)14

16

w 16
WS W
15 w

14

16

16

18

Slide 13

Random Steps (Walk): two—step

Another strategy: select a variable first, then a value:

Sometimes select variable:
\3 1. that participates in the largest number of conflicts. \f5

2. at random, any variable that participates in some conflict.
3. _at random \/ , Qe Vs VgD -

Sometimes choose value | Vo Vo VL VL G Ve Ve
~ a) That minimizes # of conflicts l/

b) at random & (<! selects

SN P S WD

Aispace

2 a: Greedy Descent with

' ' s (o /
Min—Conflict Heuristic CPSC 322, Lecture 5 A Co #'CTZSIideM

Successful application of SLS

Scheduling of Hubble Space Telescope:
reduclng time to schedule 3‘VL6ik_S_Qj'__

i one week io around 1©

CPSC 322, Lecture 5 Slide 15

Example: SLS for RNA secondary structure design

RNA strand made up of four bases: cytosine (C),

guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into

is important for its function RNA strand

Predicting structure for a GUCCCAUAGGAUGUCCCAUAGGA
strand is “easy’: O(n3)

But what if we want a strand that folds T
into a certain structure?
. Hard

Local search over strands
v’ Search for one that folds

into the right structure Secondary S'[FU CtUI’e

Evaluation function for a strand Hairpin loop
v" Run O(n®) prediction algorithm

Multibranched loop
v’ Evaluate how different the result is

from our target structure

v" Only defined implicitly, but can be
evaluated by running the prediction algorithm

Stacked pairs

Internal loop
External base

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

CPSC 322, Lecture 1 16

CSP/logic: formal verification

Hardware verification Software verification
(e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:
Encodings into propositional satisfiability (SAT)

CPSC 322, Lecture 1 17

(Stochastic) Local search advantage:

Online setting

When the problem can change (particularly important
in scheduling)

E.g., schedule for airline: thousands of flights and
thousands of personnel assignhment

- Storm can render the schedule infeasible

Goal: Repair with minimum number of changes

This can be easily done with a local search starting
form the current schedule

Other techniques usually:

" require more time

" might find solution requiring many more changes

SLS limitations

Typically no guarantee to find a solution even if one exists
SLS algorithms can sometimes stagnate

v'Get caught in one region of the search space and never terminate

Very hard to analyze theoretically

Not able to show that no solution exists
SLS simply won’ t terminate

You don’ t know whether the problem is infeasible or the
algorithm has stagnated

SLS Advantage: anytime algorithms

When should the algorithm be stopped ?

* When a solution is found
(e.g. no constraint violations)

* Or when we are out of time: you have to act NOW

* Anytime algorithm:
v’ maintain the node with best h found so far (the “incumbent”)

v’ given more time, can improve its incumbent

Lecture Overview

- Stochastic Local Search (SLS)
- Comparing SLS algorithms

CPSC 322, Lecture 15 Slide 21

Evaluating SLS algorithms

SLS algorithms are randomized
The time taken until they solve a problem is a random variable

It is entirely normal to have runtime variations of 2 orders of
magnitude in repeated runs!

v'E.g. 0.1 seconds in one run, 10 seconds in the next one
v"On the same problem instance (only difference: random seed)

v Sometimes SLS algorithm doesn’ t even terminate at all:
stagnation

If an SLS algorithm sometimes stagnhates, what is its mean
runtime (across many runs)?

Infinity!

In practice, one often counts timeouts as some fixed large value X

Still, summary statistics, such as mean run time or median run time,
don't tell the whole story

v E.g. would penalize an algorithm that often finds a solution quickly but sometime
stagnates

First attempt---.

How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn’t halt
for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn’t solve the
rest

C. one solves the problem in 100% of the cases, but slowly?

% of solved runs -
100% 1]
‘ \
b,
. 6o%
I e
\”l)o/o
4{ ls
',
N
A B Mean runtime / steps

of solved runs
CPSC 322, Lecture 5 Slide 24

Runtime Distributions are even more
effective

Plots runtime (or number of steps) and the proportion (or number)
of the runs that are solved within that runtime.

log scale on the x axis is commonly used

Fraction of N R~ C

solved runs, i.e. [
0.8

P(solved by O.7r

this # of 0.6F : B
steps/time) 05 |
0.4} 1

0.3k . A A
021 i

0t

1 o T oo T1ooo
of steps

CPSC 322, Lecture 5 Slide 25

Comparing runtime distributions

x axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

Typically use a log scale on the x axis

1 ——

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

1 10 om0 1ooo
of steps

Which algorithm is most likely to solv~
the problem within 7 steps? A. blue B. red C. green

Comparing runtime distributions

Which algorithm has the best median performance?

I.e., which algorithm takes the fewest number of steps to be successful

in 50% of the cases?
PCIICKET.
A. blue B. red C. green -

1 ! L ! L

Fraction of

0.9
solved runs, i.e.
0.8}
P(solvedby [
this # of

steps/time)

1000
of steps

Comparing runtime distributions

x axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

Typically use a log scale on the x axis

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

.1

091
0.8
Q.7+
0.6+

0.5
0.4

0.3+
0.2+
Ot

Slow, but does

best algorithm

Crossover point:
if we run longer than 80
steps, green is the

best algorithm \

| If we run less than
10 steps, red is the

N

| not stagnate

1 57% solved
{ after 80 steps,
| then stagnate

S ——— N F | -Yo | V7=Ys
1 after 10 steps,
{then stagnate

”‘IICI II” I”1IEI]EI 1000

of steps

Runtime distributions in Alspace

Let’ s look at some algorithms and their runtime
distributions:

1. Greedy Descent

2. Random Sampling
3. Random Walk
4

. Greedy Descent with random walk @ p@@@

Simple scheduling problem 2 in Alspace:

What are we going to look at in Alspace

When selecting a variable first Alspace terminology

followed by a value: i rcsurmf
: , Random sampling 1
- Sometimes select variable: r esday L

1. that participates in the Random walk 2l
largest number of conflicts. —

2. at random, any variable that Greedy Descent 1 2
participates in some conflict. —
3. at random Greedy Descent Min

Sometimes choose value conflict %32

a) That minimizes # of conflicts Ureedy Descent with random

b) at random walk -2 3-1
Geedy Descent with random
restart

CPSC 322, Lecture 5 Slide 30

Stochastic Local Search

Key Idea: combine greedily improving moves with
randomization

As well as improving steps we can allow a “small

probability” of: e %
- 1%
* Random steps: move to a random neighbor. o

* Random restart: reassign random values to all varigbg,s.
~ 0

Always keep best solution found so far

Stop when
/'7So|ution is found (in vanilla CSP;---PW--S‘&\#V-W?-D’U-@

Run out of time (return best solution so far)

CPSC 322, Lecture 5 Slide 31

Learning Goals for today’ s class

You can:

- Implement SLS with

* random steps (1—step, 2—step versions)

* random restart

e Compare SLS algorithms with runtime
distributions

CPSC 322, Lecture 4 Slide 32

Assign—2
- Will be out today — due June
Next Class

 Finish CSPs: More SLS variants Chp 4.9

* Planning: Representations and Forward Search
Chp 8.1 -8.2

* Planning: Heuristics and CSP Planning Chp 8.4

CPSC 322, Lecture 15 Slide 33

