Search: Advanced Topics

Computer Science cpsc322, Lecture 9

(Textbook Chpt 3.6)

May, 23, 2013

CPSC 322, Lecture 9 Slide 1

Lecture Overview / .

f=cr

- Recap A%
 Branch & Bound
- A* tricks

- Other Pruning

CPSC 322, Lecture 9 Slide 2

A* advantages

What is a key advantage of Ax ?

Does not need to consider the cost of the paths

A
B. Has a linear space complexity
C. It is often optimal

D

. None of the above

CPSC 322, Lecture 6 Slide 3

Branch—and—Bound Search

Biggest advantages ofAx---.

Vs ey Mcw{g%cj | OV’HMB\

- What is the biggest problem withA*x?

Spe &€

Possible, preliminary Solution:

DES 4+

CPSC 322, Lecture 9 Slide 4

Branch—and—Bound Search Algorithm

Follow exactly the same search path as depth—first search

* treat the frontier as a stack: expand the most-recently
added path first

* the order in which neighbors are expanded can be o
governed by some arbitrary node—ordering heuristic

|

Lwe Cx vsé
A et
T+ - 1¢ %
NS
1@ H |2

/1N

" 'CPSC 322, Lecture 9 Slide 5

<

Once this strategy has found a solution---.

What should it do next ?

A. Keep running DFS, looking for deeper solutions?
B. Stop and return that solution
Keep searching, but only for shorter solutions

D. None of the above

CPSC 322, Lecture 6 Slide 6

Branch—and—Bound Search Algorithm

Keep track of a lower bound and upper bound on solution
cost at each path B

lower bound: LB(p) = E(p) }(cost(p) + h(p)

upper bound: UB =cost of the best solution found so far.

v if no solution has been found yet, set the upper bound to 0.

When a path p is selected for expansion:
if LB(p)>UB, remove p from frontier without expanding it (pruning)

else expand p, adding all of its neighbors to the frontier
T

\0@6 >(a(
e A %/?\ ro6
((csgj\rﬂ’ Qg‘e\,\ p Z X 7{/ <
l\ o gt

(o (X,\

XXOS \¢ (4 >K§ el

O ER

Ko ~ CPSC 322, Lecture 9 Slide 7

Branch—and—Bound Analysis

- Complete ?

yes no

- Optimal ?

YES no

- Space complexity?

O(b™ O(mb)

- Time complexity?

Branch—and—Bound Analysis

Completeness: no, for the same reasons that DFS isn't
complete

* however, for many problems of interest there are no infinite
paths and no cycl

* hence, for many problems B&B is complete
Time complexity: O(b™)

Space complexity:---«Q(b m\)
* Branch & Bound has the same space)gomplexity as* . D%

* this is a big improvement over Y ..!

Optimality: 1‘]’@5

CPSC 322, Lecture 9 Slide 9

Lecture Overview

 Recap A%

 Branch & Bound

- A* tricks

 Pruning Cycles and Repeated States

CPSC 322, Lecture 9 Slide 10

Other A* Enhancements

The main problem with A* is that it uses exponential
space. Branch and bound was one way around this
I)
problem. Are there others” L

Thnhve Degpeug AT JpAY

Memory—bounded A*

CPSC 322, Lecture 9 Slide 1

(Heuristic) Iterative Deepening — IDA*

B & B can still get stuck in infinite (extremely long)
paths -

Search depth—first, but to a fixed depth /bouwa’

* if you don't find a solution, increase the depth tolerance
and try again

. depth iS measured in

st W@KIQJ %(Mﬂ - %(MB

* Then update with the ..’.OIA}QSt..Tg-r..." that passed the
previous bound

CPSC 322, Lecture 9 Slide 12

Analysis of Iterative Deepening A* (IDA)

- Complete and optimal:

- Space complexity:

O(b™ O(m’) o(pbm) | O(b+m)

- Time complexity:

O™ O(m) o(bm) [O(b+m)

(Heuristic) Iterative Deepening — IDA*

Counter—intuitively, the asymptotic complexity is not
changed, even though we visit paths multiple times
(go back to slides on uninformed ID)

Z
\

()

CPSC 322, Lecture 9 Slide 14

Heuristic value by look ahead

bclicker. D) =
]) 3y b
h}"m lf\ (_\/) 2\ = Z

What is the most accurate admissible
heuristic value for n, given only this info ?

@
o
N
N
v
C
R

O 0w
o N o

W))\}v\ [COST(m}v\AJF . (M

CPSC 322, Lecture 9 Slide 15

Memory—bounded A*

[terative deepening A* and B & B use a tiny amount
of memory

what if we've got more memory to use?
keep as much of the fringe in memory as we can

If we have to delete something:
* delete the worst paths (with LV\Q)(L‘G/S‘(// ‘F)

* " “back them up” to a common ancestor

CPSC 322, Lecture 9 Slide 16

CCCCCCCCCCCCCCCC

MBA*: Compute New A(p)

@ New h(p) = min[mlax[(cost(p,) - cost(p))+ h(p;)], Old h(p)

@Ne h(p) = max

r-

New h(p) = max

(
\
)

\

min{(cost(p,) - cost(p))+ h(p,)], Old h(p)

max[(cost(p;) - cost(p))+ h(p;)], Old h(p)

\

N N~

MBA*: Compute New A(p) , O

I
(cost(p;) - cost(p))+ h(p,). w
Z — §
@New h(p) = max{(cost(pi) - cost(p))+ h(p,)], Old h(p)]

Memory—bounded A*

[terative deepening A* and B & B use a tiny amount
of memory

what if we've got more memory to use?
keep as much of the fringe in memory as we can

If we have to delete something:

. delete the worst paths (with - L-‘“ﬁ/l"est-dg" ------)

back them up” to a common ancestor

O
(») AP max min

() 7] et (e)- o))

0 gl Bp)

CPSC 322, Lecture 9 Slide 20

min max

Lecture Overview

* Pruning Cycles and Repeated States

CPSC 322, Lecture 9 Slide 21

Cycle Checking

=
_’Q
%

You can prune a path that ends in a node already on the path.
This pruning cannot remove an optimal solution.

. The time ig -+~ &wvm. ... in path length.

/ Z
4"’%WA
\ M

CPSC 322, Lecture 10 Slide 22

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear
problem into an exponential one!

A

CPSC 322, Lecture 10 Slide 23

Multiple—Path Pruning

‘You can prune a path to node n that you have already
found a path to

- (if the new path is longer — more costly).

CPSC 322, Lecture 10 Slide 24

Multiple—Path Pruning & Optimal Solutions

Problem: what if a subsequent path to »nis shorter than the first
path to n ?

You can remove all paths from the frontier that use the
longer path. (as these can’ t be optimal)

CPSC 322, Lecture 10 Slide 25

Multiple—Path Pruning & Optimal Solutions

Problem: what if a subsequent path to »nis shorter than the first
path to n ?

You can change the initial segment of the paths on the
frontier to use the shorter path.

CPSC 322, Lecture 10 Slide 26

Learning Goals for today’ s class

Define/read/write/trace/debug different search
algorithms

*With / Without cost
*Informed / Uninformed

* Pruning cycles and Repeated States

CPSC 322, Lecture 7 Slide 27

Next class: Thurs

Dynamic Programming

Recap Search

Start Constraint Satisfaction Problems (CSP)
Chp 4.

e Start working on assignment—1 !

CPSC 322, Lecture 9 Slide 28

