TA Evaluations

Johnson, David

Johnson, Jordon

Please Also Complete Teaching Evaluations

will close on Sun, June 25th

Kazemi, Seyed Mehran

Rahman, MD Abed

Wang, Wenyi

Decision Theory: Sequential Decisions

Computer Science cpsc322, Lecture 34

(Textbook Chpt 9.3)

2

June, 22, 2017

"Single" Action vs. Sequence of Actions

Set of primitive decisions that can be treated as a single macro decision to be made *before acting*

1/

- Agent makes observations
- Decides on an action \checkmark
- Carries out the action \angle

Lecture Overview

- Sequential Decisions
 - Representation
 - Policies 🧹
- Finding Optimal Policies

Sequential decision problems

A sequential decision problem consists of a sequence of decision variables D₁,...,D_n.
Each D_i has an information set of variables pD_i, whose value will be known at the time decision D_i is made.

Sequential decisions : Simplest possible

- Only one decision! (but different from one-off decisions)
- Early in the morning. I listen to the weather forecast, shall I take my umbrella today? (I'll have to go for a long walk at noon)

Sequential decisions : Simplest possible

- Only one decision! (but different from one-off decisions)
- Early in the morning. Shall I take my umbrella today? (I'll have to go for a long walk at noon)
- Relevant Random Variables?

Policies for Sequential Decision Problem: Intro

 A policy specifies what an agent should do under each circumstance (for each decision, consider the parents of the decision node)

In the *Umbrella* "degenerate" case:

? T F One possible Policy $\rightarrow R T F T.I.$ Rony Clondy Sunny TFT *рD*₁ \rightarrow $\rightarrow \varsigma$ dompD 3 policies How many policies? dom = domain

Sequential decision problems: "complete" Example

- A sequential decision problem consists of a sequence of decision variables D_1, \dots, D_n
- Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made.

Policies for Sequential Decision Problems

- A policy is a sequence of $\delta_1, \dots, \delta_n$ decision functions $\delta_i : \operatorname{dom}(pD_i) \to \operatorname{dom}(D_i)$
- This policy means that when the agent has observed

•

Lecture Overview

- · Recap
- Sequential Decisions
- Finding Optimal Policies

When does a possible world satisfy a policy?

- A <u>possible world</u> specifies a value for each random variable and each decision variable.
- **Possible world** *w* **satisfies policy** δ , written $w \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in *w*).

When does a possible world satisfy a policy?

Possible world W satisfies policy δ , written $W \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in W).

Expected Value of a Policy

Each possible world W has a probability P(W) and a utility U(W)

The expected utility of policy δ is

•

•

$$\sum_{\substack{\omega \neq \delta}} P(\omega) * U(\omega)$$

The optimal policy is one with the

expected utility.

Lecture Overview

- · Recap
- Sequential Decisions
- Finding Optimal Policies (Efficiently)

Complexity of finding the optimal policy: how

many policies?

If a decision <u>*D* has *k* binary parents, how many assignments of values to the parents are there? 7^{κ} </u>

If there are <u>b</u> possible actions (possible values for D), how many different decision functions are there? 2^{K}

If there are <u>d</u> decisions, each with k binary parents and b possible actions, how many policies are there?

 $\binom{2^{K}}{b}^{0}$

Finding the optimal policy more efficiently: VE

- 1. Create a factor for each conditional probability table and a factor for the utility.
- **2.** Sum out random variables that are not parents of a decision node.
- **3.** Eliminate (aka sum out) the decision variables
- 4. Sum out the remaining random variables.
- 5. Multiply the factors: this is the expected utility of the optimal policy.

Eliminate the decision Variables: step3 details

Select a variable D that corresponds to the latest decision to be made

• this variable will appear in only one factor with its parents

Eliminate D by maximizing. This returns:

- A new factor to use in VE, max_D f
- The optimal decision function for D, arg max_D f

Repeat till there are no more decision nodes.

•

•

Report	CheckSmoke
true	true
false	talse
	ļ

VE elimination reduces complexity of finding the optimal policy

We have seen that, if a decision D has k binary parents, there are b possible actions, If there are d decisions,

• Then there are: $(b^{2^k})^d$ policies

Doing variable elimination lets us find the optimal policy after considering only d.b policies (we eliminate one decision at a time)

- VE is much more efficient than searching through policy space.
- However, this complexity is still doubly-exponential we'll only be able to handle relatively small problems.

+ give up nonforgetting dismp + opprox. Stearitt 422

Learning Goals for today's class

You can:

- Represent sequential decision problems as decision networks. And explain the non forgetting property
- Verify whether a possible world satisfies a policy and define the expected value of a policy
- Compute the number of policies for a decision problem
- Compute the optimal policy by Variable Elimination

Big Picture: Planning under Uncertainty

Cpsc 322 Big Picture

422 big picture

StarAI (statistical relational AI)

Hybrid: Det +Sto

Prob CFG **Prob** Relational Models Markov Logics Deterministic **Stochastic Belief Nets** Logics Approx. : Gibbs First Order Logics Markov Chains and HMMs Forward, Viterbi.... Ontologies Approx. : Particle Filtering Query Undirected Graphical Models **Full Resolution** Markov Networks SAT • Conditional Random Fields Markov Decision Processes and Partially Observable MDP Planning Value Iteration **Approx.** Inference ۲ Representation Reinforcement Learning Reasoning Applications of AI Technique

StarAI (statistical relational AI)

Hybrid: Det +Sto

Prob CFG **Prob** Relational Models Markov Logics

More AI ...

Machine Learning Knowledge Acquisition Preference Elicitation

	Deterministic	Stochastic	_
	Lorics	Belief Nets	
Query	First Order Logics Ontologies	Markov Chains and HMMs	Where are the components of our representations coming from?
_		Undirected Graphical Models Markov Networks Conditional Random Fields	The probabilities? The utilities?
Planning		Markov Decision Processes and Partially Observable MDP Reinforcement Learning	The logical formulas? From people and from data!
			Slide 25

Some of our Grad Courses

522: Artificial Intelligence II : Reasoning and Acting Under Uncertainty

Sample Advanced Topics....

<u>Relational Reinforcement Learning for Agents in Worlds</u> <u>with Objects, relational learning</u>.

Probabilistic Relational Learning and Inductive Logic
Programming at a Global Scale,

Some of our Grad Courses

503: Computational Linguistics I / Natural Language Processing

Sample Advanced Topics.....

- Topic Modeling (LDA) Large Scale Graphical Models
- Discourse Parsing by Deep Learning (Neural Nets)
- Abstractive Summarization

Other AI Grad Courses: check them out

532: Topics in Artificial Intelligence (different courses)

- User-Adaptive Systems and Intelligent Learning Environments
- Foundations of Multiagent Systems

540: Machine Learning

505: Image Understanding I: Image Analysis 525: Image Understanding II: Scene Analysis

515: Computational Robotics

Announcements

Assignment 4. Due Sunday, June 25th @ 11:59 pm. Late submissions will not be accepted, and late days may not be used..

FINAL EXAM: Thu, Jun 29 at 7-9:30 PM Room: BUCH A101

Final will comprise: 10 –15 short questions + 3–4 problems

- Work on all practice exercises (including 9.B) and sample review questions and problems (will be posted over the weekend)
 - While you revise the **learning goals**, work on **review questions** I may even reuse some verbatim ©

 Come to remaining Office hours! (schedule for next week will be posted on piazza) My office hour tomorrow will be at 2PM