Example: Localization for "Pushed around" Robot

- **Localization** (where am I?) is a fundamental problem in **robotics**
- Suppose a robot is in a circular corridor with 16 locations

• There are four doors at positions: 2, 4, 7, 11

- The Robot initially doesn't know where it is
- The <u>Robot is pushed around</u>. After a push it can stay in the same location, move left or right.
 - The Robot has a Noisy sensor telling whether it is in front of a door

This scenario can be represented as...

Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves one step left or right with equal probability

This scenario can be represented as...

Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves left or right with equal probability

This scenario can be represented as...

CPSC 322, Lecture 32

Useful inference in HMMs

• Localization: Robot starts at an unknown location and it is pushed around *t* times. It wants to determine where it is

In general: compute the posterior distribution over the current state given all evidence to date $P(S_t \mid O_0 \cdots O_t)$

Example : Robot Localization

Suppose a robot wants to determine its location based on its actions and its sensor readings

Three actions: goRight, goLeft, Stay

•

This can be represented by an augmented HMM

Robot Localization Sensor and Dynamics Model

 $P(Loc_{t+1} = L) Action_{t} = goRight, Loc_{t} = L) = 0.1$ $P(Loc_{t+1} = L+1 | Action_{t} = goRight, Loc_{t} = L) = 0.8$ $P(Loc_{t+1} = L + 2 | Action_{t} = goRight, Loc_{t} = L) = 0.074$ $P(Loc_{t+1} = L' | Action_{t} = goRight, Loc_{t} = L) = 0.002 \text{ for all other locations L'}$

All location arithmetic is modulo 16

The action *goLeft* works the same but to the left

Dynamics Model More Details

Robot Localization additional sensor

Lt = T the Robot senses light

- Additional Light Sensor: there is light coming through an opening at location 10 $P(L_t | Loc_t)$

The Robot starts at an unknown location and must determine where it is

The model appears to be too ambiguous

- Sensors are too noisy
- Dynamics are too stochastic to infer anything

But inference actually works pretty well. You can check it at :

http://www.cs.ubc.ca/spider/poole/demos/localization
/localization.html

You can use standard Bnet inference. However you typically take advantage of the fact that time moves forward (not in 322)

Sample scenario to explore in demo

Keep making observations without moving. What happens?

- Then keep moving without making observations. What happens?
- Assume you are at a certain position alternate moves and observations

Decision Theory: Single Stage Decisions

Computer Science cpsc322, Lecture 33

(Textbook Chpt 9.2)

June 22, 2017

Lecture Overview

- Intro
- One-Off Decision Example
- Utilities / Preferences and optimal Decision
- Single stage Decision Networks

Planning in Stochastic Environments

Planning Under Uncertainty: Intro

- **Planning** how to select and organize a sequence of actions/decisions to achieve a given goal.
- Deterministic Goal: A possible world in which some propositions are true

- Planning under Uncertainty: how to select and organize a sequence of actions/decisions to "*maximize the probability*" of "*achieving a given goal*"
 - <u>Goal under Uncertainty</u>: we'll move from all-ornothing goals to a richer notion: rating how *happy* the agent is in different possible worlds.

"Single" Action vs. Sequence of Actions

Set of primitive decisions that can be treated as a single macro decision to be made *before* acting one - off

> Sequential Decisions

- Agents makes observations
- Decides on an action
- Carries out the action \checkmark

Lecture Overview

- Intro
- One–Off Decision Example
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks

One-off decision example

not

Atolse (1)

Delivery Robot Example

- Robot needs to reach a certain room
- Going through stairs may cause an accident.
- (It can go the short way through long stairs, or the long way through <u>short stairs</u> (that <u>reduces the chance of an accident</u> but takes more time)
- Which long (1) P(A=t | WW=long) < P(A=t | WW= Way short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW

The Robot can choose to wear pads to protect itself or not (to protect itself in case of an accident) but pads slow it down Wear t + A = tPads f + A = t

· If there is an accident the Robot does not get to the room

Decision Tree for Delivery Robot

This scenario can be represented as the following decision tree

The agent has a set of decisions to make (a macro-action it can perform)

Decisions can influence random variables

Decisions have probability distributions over outcomes

Decision Variables: Some general Considerations

- A possible world specifies a value for each random variable and each decision variable.
- For each assignment of values to all decision variables, the probabilities of the worlds satisfying that assignment sum to 1.

Lecture Overview

- Intro
- One–Off Decision Problems
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks

What are the optimal decisions for our Robot?

- It all depends on how happy the agent is in different situations.

Utility / Preferences

Utility: a measure of desirability of possible worlds to an agent

• Let *U* be a real-valued function such that U(W) represents an agent's degree of preference for world *W*.

Would this be a reasonable utility function for our Robot, who wants to reach the room?

		· · · · ·			
	Which way	Accident	Wear Pads	Utility	World
	short	true	true	35	w0, moderate damage
\geq	short	false	true	95	w1, reaches room, quick, extra weight
-	long	true	true	30	w2, moderate damage, low energy
	long	false	true	75	w3, reaches room, slow, extra weight
	short	true	false	3	w4, severe damage
\geq	short	false	false	100	w5, reaches room, quick
-	long	false 🕤	false	0	w6, reaches room, slow
	long	true 🥙	false	80	w7, severe damage, low energy 🛛
- 1					

C.No

B. It depends

A. Yes

Utility: Simple Goals

 How can the simple (boolean) goal "reach the room" be specified?
iclicker.

									B		
-	Which v	vay Accider	nt Wear P	ads Utility		Whi	ch way	Accident	Wear	Pads	Utility
	long	true	tr	ue O		long	5	true	1	true	0
	long	true	fa	ilse 🔿		long	5	true	1	false	0
	long	false	tru	ie 💧		long	S	false	tı	rue	0
	long	false	fal	se O		long	5	false	fa	alse	100
	short	true	tr	ue 🔘 🔿		sho	rt	true	t	true	0
	short	true	fa	lse 🔿		sho	rt	true	f	false	0
	short	false	tru			sho	rt	false	tr	rue	0
	short	false	fals	se 90		sho	rt	false	fa	alse	0
		Which way	Accident	Wear Pads	Utility						
C).	long	true	true	0						
		long	true	false	0						
		long	false	true	100						
		long	false	false	100						
		short	true	true	0			D. Not	possi	ble	
		short	true	false	0						
		short	false	true	100					Slide	24
		short	false	false	100						

Utility: Simple Goals

 Can simple (boolean) goals still be specified?
gool: ^hreaching the room^h Accident wust be

tolse

	Which way	Accident	Wear Pads	Utility
	long	true	true	0
	long	true	false	0
$\left(\right)$	long	false	true	100
\sim	long	false	false	100
	short	true	true	0
\leftarrow	short	true	false	\bigcirc
~	short	false	true	102
	short	false	false	100

Optimal decisions: How to combine Utility with Probability

What is the **utility** of achieving a certain **probability distribution** over **possible worlds**?

It is its **expected utility/value** i.e., its average utility, weighting possible worlds by their probability.

$$EU(wP_{=}t, WW = short) =$$

.2 * 35 + . 8 * 75

Optimal decision in one-off decisions

Given a set of *n* decision variables var_i (e.g., Wear Pads, Which Way), the agent can choose:

Optimal decision: Maximize Expected Utility

• The expected utility of decision $D = d_i$ is

$$\mathbb{E}(U \mid D = d_i) = \sum_{w \models D = d_i} P(w \mid D = d_i) U(w)$$

e.g.,
$$\mathbb{E}(U \mid D = \{WP = f \ge k, WW = show\}$$

 $P(w_4|D) \neq U(w_4) + P(w_5|D) \neq U(w_5)$

MDY

EU

• An optimal decision is the decision $D = d_{max}$ whose expected utility is maximal: Wear Pads Which way

$$d_{\max} = \underset{d_i \in dom(D)}{\operatorname{arg\,max}} \mathbb{E}(U \mid D = d_i) \xrightarrow{}_{i \in dom(D)} \operatorname{true} \qquad \underset{false}{\operatorname{false}} \qquad \underset{false}{\operatorname{false}} \qquad \underset{long}{\operatorname{false}} \qquad \underset{false}{\operatorname{false}} \qquad \underset{long}{\operatorname{false}} \qquad \underset{long}{\operatorname{fals}} \ \underset{long}{\operatorname{fals}} \ \underset{long}{\operatorname{fals}} \ \underset{fals}} \ \underset{long}{\operatorname{fals}} \ \underset{long}{\operatorname{fals}} \ \underset{long}{\operatorname{fals}} \ \underset{long}{\operatorname{fals}} \ \underset{fals}} \ \underset{fals} \ \underset{fals} \ \underset{fals}} \ \underset{$$

Expected utility of a decision

- The expected utility of decision $D = d_i$ is $\mathbb{E}(U \mid D = d_i) = \sum_{w \models (D = d_i)} P(w) \ U(w)$
- What is the expected utility of Wearpads=true, WhichWay=short ?

Lecture Overview

- Intro
- One–Off Decision Problems
- Utilities / Preferences and Optimal Decison
- Single stage Decision Networks

Single-stage decision networks

Extend belief networks with:

- **Decision nodes**, that the agent chooses the value for. *Drawn as rectangle*.
- **Utility node**, the parents are the variables on which the utility depends. *Drawn as a diamond*.
- Shows explicitly which decision nodes affect random variables

Single-stage decision networks

Extend belief networks with:

- **Decision nodes**, that the agent chooses the value for. *Drawn as rectangle*.
- **Utility node**, the parents are the variables on which the utility depends. *Drawn as a diamond*.
- Shows explicitly which decision nodes affect random variables

S			
Which way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

	Which	Accident	
	way		
_	long	true	0.01
	long	false	0.99
	short	true	0.2
	short	false	0.8

To find the optimal decision we can use VE:

- 1. Create a factor for each conditional probability and for the utility
- 2. Multiply factors and sum out all of the random variables (This creates a factor on that gives the expected utility for each)
- 3. Choose the ϕ with the maximum value in the factor.

Example Initial Factors (Step1)

fa Which Way	Acc Wear	cident Pads	f_2 Utility f_2			
			Which way	Accident	Wear Pads	Utility
+1/			long	true	true	30
			long	true	false	0
Which way	Accident	Probability	long	false	true	75
long	true	0.01	long	false	false	80
long	false	0.99	short	true	true	35
short	true	0.2	short	true	false	3
short	false	0.8	short	false	true	95
		1	short	false	false	

Example: Multiply Factors (Step 2a)

	Acc	cident				+
Which Way	Wear I	Pads	Utility	$\sum_{A} f_1(V$		$\sum_{A} f_1(WW, A) \times f_2(A, V)$
Which way	Accident	Probability] +1		+3	\neq 3
long long	true false	0.01 0.99		Which way	Which way Accident	Which way Accident Wear Pads
short	true	0.2	/			
short	false	0.8	<u> </u>	long	long true	long true true
Which way	Accident	Wear Pads	Utility	long	long true	long true false
long	true	true	30	long	long false	long false true
IOUS				-		
long long	true	false	0	long	long false	long false false
	true false		0 75	long short		
long long long	false false	false true false	75 80	_	short true	short true true
long long long short	false false true	false true false true	75 80 35	short	short true short true	short true true short true false
long long long	false false	false true false	75 80	short short	short true short true short false	short true true short true false short false true

Example: Sum out vars and choose max (Steps 2b-3)

Thus the optimal policy is to take the **short way** and **wear pads**, with an *expected utility* of 83.

Learning Goals for today's class

You can:

- Compare and contrast stochastic single-stage (one-off) decisions vs. multistage decisions
- Define a Utility Function on possible worlds
- Define and compute optimal one-off decision (max expected utility)
- Represent one-off decisions as single stage decision networks and compute optimal decisions by Variable Elimination

Next Class (textbook sec. 9.3)

Set of primitive decisions that can be treated as a single macro decision to be made *before acting*

Sequential Decisions

- Agents makes observations
- Decides on an action
- Carries out the action