Probability and Time: Hidden Markov Models (HMMs)

Computer Science cpsc322, Lecture 32

(Textbook Chpt 6.5.2)

June, 20, 2017

Lecture Overview

- Markov Chain
- Hidden Markov Models

Answering Queries under Uncertainty

Lecture Overview

· Recap

- Markov Models
 - Markov Chain
 - Hidden Markov Models

How can we minimally extend Markov Chains?

• Maintaining the Markov and stationary assumptions?

Auseful situation to model is the one in which:

- the reasoning system does not have access to the states
- but can make observations that give some information about the current state

Hidden Markov Model

A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

• $P(S_0)$ specifies initial conditions

•

$$\mathcal{N}_{P}(S_{t+1}|S_{t})$$
 specifies the dynamics

$$O_P(O_t | S_t)$$
 specifies the sensor model

CPSC 322, Lecture 32

i**⊳**clicker.

A. 2 × h

B. $h \times h$

 \mathbf{C} . $k \times h$

D. $k \times k$

Hidden Markov Model

AHidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

Example: Localization for "Pushed around" Robot

- **Localization** (where am I?) is a fundamental problem in **robotics**
- Suppose a robot is in a circular corridor with 16 locations

There are four doors at positions: 2, 4, 7, 1

- The Robot initially doesn't know where it is
- The <u>Robot is **pushed around**</u>. After a push it can stay in the same location, move left or right.
- The Robot has a **Noisy sensor** telling whether it is in front of a door

This scenario can be represented as...

Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves one step left or right with equal probability

This scenario can be represented as...

Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves left or right with equal probability

$$\frac{y}{P(Loc_{t+1} | Loc_{t})} = \frac{0 + 2 + 2 + 4 + 5 + 0 + 1 + 1}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0 - 1 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{1 + 4 + 2 + 4 + 0}$$

$$\frac{y}{$$

This scenario can be represented as...

Useful inference in HMMs

• Localization: Robot starts at an unknown location and it is pushed around *t* times. It wants to determine where it is

$$P(Loc_t | \underline{o_1 \dots o_t})$$

In general: compute the posterior distribution over the current state given all evidence to date $P(S_t \mid O_0 \cdots O_t)$

Example : Robot Localization

Suppose a robot wants to determine its location based on its actions and its sensor readings

Three actions: *goRight, goLeft, Stay*

This can be represented by an augmented HMM

Robot Localization Sensor and Dynamics Model

Sample Sensor Model (assume same as for pushed around) Sample Stochastic Dynamics: $P(Loc_{t+1} | Action_t, Loc_t)$ $P(Loc_{t+1} = L) Action_t = goRight, Loc_t = L) = 0.1$ $P(Loc_{t+1} = L+1 | Action_t = goRight, Loc_t = L) = 0.8$ $P(Loc_{t+1} = L + 2 | Action_t = goRight, Loc_t = L) = 0.074$ $P(Loc_{t+1} = L' | Action_t = goRight, Loc_t = L) = 0.002$ for all other locations L'

All location arithmetic is modulo 16

The action *goLeft* works the same but to the left

Dynamics Model More Details

Robot Localization additional sensor

.

Additional Light Sensor: there is light coming through an opening at location 10 $P(L_t | Loc_t)$

The Robot starts at an unknown location and must determine where it is

The model appears to be too ambiguous

- Sensors are too noisy
- Dynamics are too stochastic to infer anything

But inference actually works pretty well. You can check it at :

http://www.cs.ubc.ca/spider/poole/demos/localization
 /localization.html

You can use standard Bnet inference. However you typically take advantage of the fact that time moves forward (not in 322)

Sample scenario to explore in demo

Keep making observations without moving. What happens?

- Then keep moving without making observations. What happens?
- Assume you are at a certain position alternate moves and observations

HMMs have many other applications....

Natural Language Processing: e.g., Speech Recognition

For these problems the <u>critical inference</u> is:

find the most likely sequence of states given a sequence of observations

Viterbi Algo

Markov Models

Learning Goals for today's class

You can:

- Specify the components of an Hidden Markov Model (HMM)
- Justify and apply HMMs to Robot Localization

Clarification on second LG for last class

You can:

Justify and apply Markov Chains to compute the probability of a Natural Language sentence (NOT to estimate the conditional probs- slide 18)

Next week

Next Class

- One-off decisions(TextBook 9.2)
- Single Stage Decision networks (9.2.1)

Final

Thu, Jun	Final Exam (2.5 hours	
29 at	Room: BUCH A101	
19:00		