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Lecture Overview

• Recap 

• Markov Models

• Markov Chain

• Hidden Markov Models
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Stationary Markov Chain (SMC)

A stationary Markov Chain : for all t >0

• P (St+1| S0,…,St) = and 

• P (St +1|

We only need to specify and 

• Simple Model, easy to specify

• Often the natural model

• The network can extend indefinitely

• Variations of SMC are at the core of most Natural Language 
Processing (NLP) applications!
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Lecture Overview

• Recap

• Markov Models

• Markov Chain

• Hidden Markov Models



How can we minimally extend Markov Chains?

• Maintaining the Markov and stationary assumptions?

A useful situation to model is the one in which: 

• the reasoning system does not have access to the 
states

• but can make observations  that give some information 
about the current state
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Hidden Markov Model

• P (S0) specifies initial conditions

• P (St+1|St) specifies the dynamics

• P (Ot |St) specifies the sensor model

• A Hidden Markov Model (HMM) starts with a Markov chain, 
and adds a noisy observation about the state at each time 
step:

• |domain(S)| = k

• |domain(O)| = h

B. h x h

A. 2 x h

C . k x h

D. k x k
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Hidden Markov Model

• P (S0) specifies initial conditions

• P (St+1|St) specifies the dynamics

• P (Ot |St) specifies the sensor model

• A Hidden Markov Model (HMM) starts with a Markov chain, and 
adds a noisy observation about the state at each time step:

• |domain(S)| = k

• |domain(O)| = h
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Example: Localization for “Pushed around” Robot

• Localization (where am I?) is a fundamental problem in 

robotics

• Suppose a robot is in a circular corridor with 16 locations

• There are four doors at positions: 2, 4, 7, 11

• The Robot initially doesn’t know where it is

• The Robot is pushed around. After a push it can stay in the 
same location, move left or right.

• The Robot has a Noisy sensor  telling whether it is in front of 
a door 



This scenario can be represented as…

• Example Stochastic Dynamics: when pushed, it stays in the same 
location p=0.2, moves one step left or right with equal probability

P(Loct + 1 | Loc t)

Loc t= 10 B. 

A. 

C. 
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This scenario can be represented as…

• Example Stochastic Dynamics: when pushed, it stays in the same 
location p=0.2, moves left or right with equal probability

P(Loct + 1 | Loc t)

P(Loc1)
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This scenario can be represented as…

Example of Noisy sensor  telling whether 
it is in front of a door. 

• If it is in front of a door P(O t = T) = .8

• If not in front of a door P(O t = T) = .1

P(O t | Loc t)



Useful inference in HMMs

• Localization: Robot starts at an unknown location 
and it is pushed around t times. It wants to 
determine where it is

• In general: compute the posterior distribution over 
the current state given all evidence to date

P(St  | O0 … Ot)
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Example : Robot Localization
• Suppose a robot wants to determine its location based on its 

actions and its sensor readings

• Three actions: goRight, goLeft, Stay

• This can be represented by an augmented HMM
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Robot Localization Sensor and Dynamics Model

• Sample Sensor Model (assume same as for pushed around)

• Sample Stochastic Dynamics: P(Loct + 1 | Actiont , Loc t)

P(Loct + 1 = L | Action t = goRight , Loc t = L) = 0.1

P(Loct + 1 = L+1 | Action t = goRight , Loc t = L) = 0.8

P(Loct + 1 = L + 2 | Action t = goRight , Loc t = L) = 0.074

P(Loct + 1 = L’ | Action t = goRight , Loc t = L) = 0.002  for all other locations L’

• All location arithmetic is modulo 16

• The action goLeft works the same but to the left
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Dynamics Model More Details

• Sample Stochastic Dynamics: P(Loct + 1 | Action, Loc t)
P(Loct + 1 = L | Action t = goRight , Loc t = L) = 0.1

P(Loct + 1 = L+1 | Action t = goRight , Loc t = L) = 0.8

P(Loct + 1 = L + 2 | Action t = goRight , Loc t = L) = 0.074

P(Loct + 1 = L’ | Action t = goRight , Loc t = L) = 0.002  for all other locations L’
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Robot Localization additional sensor

• Additional Light Sensor: there is light coming through an opening at 
location 10 P (Lt  | Loct)

• Info from the two sensors is combined :“Sensor Fusion”



CPSC 322, Lecture 32 Slide 18

The Robot starts at an unknown location and must 
determine where it is

The model appears to be too ambiguous

• Sensors are too noisy

• Dynamics are too stochastic to infer anything

http://www.cs.ubc.ca/spider/poole/demos/localization

/localization.html

But inference actually works pretty well. 

You can check it at :

You can use standard Bnet inference. However you typically take 
advantage of the fact that time moves forward (not in 322)
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Sample scenario to explore in demo

• Keep making observations without moving. What 
happens?

• Then keep moving without making observations. What 
happens?

• Assume you are at a certain position alternate 
moves and observations

• ….
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HMMs have many other applications….

Natural Language Processing: e.g., Speech Recognition

• States: phoneme \ word

• Observations:      acoustic signal  \ phoneme

Bioinformatics: Gene Finding

• States: coding / non-coding region

• Observations: DNA Sequences

For these problems the critical inference is: 
find the most likely sequence of states given a 

sequence of observations 
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Markov Models

Markov Chains

Hidden Markov Model

Markov Decision 
Processes (MDPs)

Simplest Possible 
Dynamic Bnet

Add noisy 
Observations 

about the state 
at time t

Add Actions and Values 
(Rewards)
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Learning Goals for today’s class

You can:

• Specify the components of an Hidden Markov 
Model (HMM)

• Justify and apply HMMs to Robot Localization

Clarification on second LG for last class

You can:

• Justify and apply Markov Chains to compute the probability of a 
Natural Language sentence (NOT to estimate the conditional 
probs- slide 18)
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Next week
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Decision Nets

Markov Decision Processes

Var. Elimination

Static

Sequential

Representation
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Technique

SLS

Markov Chains and HMMs
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Next Class

• One-off decisions(TextBook 9.2)

• Single Stage Decision networks (  9.2.1)

Final

Thu, Jun 

29 at 

19:00

Final Exam (2.5 hours) 

Room: BUCH A101


