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Stationary Markov Chain (SMC)
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P(S . Se) e some Y E
We only need to specify ?Cﬂab.éi ?(SCM } Se>

Simple Model, easy to specify
Often the natural model K <K g’
The network can extend indefinitely K pee

... ébys‘f Nb
Variations of SMC are at the core ofmost Natural Language

Processing (NLP) applications!
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How can we minimally extend Markov Chains’
Lo Ea t, + .

A Maintaininghe Markovand stationary assumptions?

Auseful situation to model is the one in which:

Athe reasoning systendoes not have accesso the
states

A but can make observationsthat give some informatior
about the current state
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Hidden Markov Model

A Hidden Markov Model (HMMg}arts with a Markov chain,
and adds a noisy observation about the state at each time

\/ step: ~

|domain(S)| =%

|domain(O)| #

P (S, specifies initial conditions
()

7§P(5;+1|5,) specifies the dynamics A.2x h

B.hx h
C.kxh
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Hidden Markov Model

AHidden Markov Model (HMMgjarts with a Markov chain, and
adds a noisy observation about the state at each time step:

|domain(S)| =%
|domain(O)| 1
P (S, specifies initial conditions <
7§P(5}+1|5}) specifies the dynamics |4 < s
(00
£ x &\L ‘o&r
@P(OAS}) specifies the sensor model |~ LO“
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Example:

Localization(where am 1?) is a fundamental problem in

robotics

Suppose a robot is in a circular corridor with_16 location

/

«

0

0 1 2 3 4 S 6 7

<
15

There arefour doorsat positions: 2, 4, 7, 1

The Robot ispushed aroundifter a push it can_stay in the

same location, move left or right.
// —

The Robot hasa Noisysensor telling whether it is in front of

a door
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Example Stochastic Dynamicsvhen pushed, it stays in the sathe
location p=0.2, movesne step left or right with equal probability
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Example Stochastic Dynamicsvhen pushed, it stays in the saﬁ‘\e
location p=0.2, moves left or right with equal probability
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Example of Noisy sensotelling v;hg&hé’r mwc Jj

It IS In front of a door
e

2 f(0c=T) 7 F

If it Is In front of a door P(O, =T) .8@ ) [Ot )

If not in front of a door P(O, =T) =\1} - T 7—
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Useful inference in HMMs

A Localization Robot starts at an unknown location
and it is pushed around times. It wants to

determine where it is

?CLOCt
7 7
In generalcompute the posterior distribution over
(the current state) given all evidence to date

P50, O)
Y

/
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Example Robot Localization

Suppose a robot wants to determine its location based on its
actions and its sensor readings

Three actions:goRight, goLeft, Stay
This can be represented by an augmented HMM

A A2 - -~ ~ - -
Gy (>
(2 (@ (o

&)<
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Robot Localization Sensor and Dynamics Mode

— ~r—

8 9 0 11 12 13 14 15

?CO{: l Loct\

‘Sample Sensor Moddhssume same as for pushed around)
Sample Stochastic Dynamics P(Loc, , ,/ Acz‘/on,, Loc,)
P(L0q+ 1 —@’ Action, = goRight, Log =L) = 0.1
P(L0q+ 1= L+1[Action, = goRight, Log = L) = . &

;)P(Loq+ ;=L +2/[Action, = goRight, Log = L) = 0.074

2P(Log, ;= goRight, Loc ‘ \
X13

All location arithmetic is modulo 16
The actiongoleftworks the same but to the left

CPSC 322, Lecture32 Slide 15






