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Lecture Overview

• Recap Learning Goals previous 
lecture

• Bnets Inference

• Intro

• Factors

• Variable elimination Intro
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Learning Goals for previous class

You can:

• In a Belief Net, determine whether one variable 
is independent of another variable, given a set 
of observations.

• Define and use Noisy-OR distributions. Explain 
assumptions and benefit. 

• Implement and use a naïve Bayesian classifier.  
Explain assumptions and benefit. 
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3 Configuration blocking dependency (belief propagation)
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Bnets: Compact Representations

n Boolean variables, k max. number of parents

Only one parent with h possible values
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Lecture Overview

• Recap Learning Goals previous 
lecture

• Bnets Inference

• Intro

• Factors

• Variable elimination Algo
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Bnet Inference
• Our goal: compute probabilities of variables in a 

belief network

What is the posterior distribution over one or more variables, 
conditioned on one or more observed variables?

P(Alarm| Smoke          )

P(Fire | Smoke            ,Leaving           )
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Bnet Inference: General
• Suppose the variables of the belief network are X1,…,Xn.

• Z is the query variable

•Y1=v1, …, Yj=vj are the observed variables (with their values)

• Z1, …,Zk are the remaining variables

• What we want to compute: ),,|( 11 jj vYvYZP  

Example:

P(L | S = t , R = f)



CPSC 322, Lecture 29 Slide 9

What do we need to compute?
Remember conditioning and marginalization…

P(L | S = t , R = f)

L S R P(L, S=t, R=f )

t t f

f t f

Do they have to 
sum up to one?

L S R P(L | S=t, R=f )

t t f

f t f

A. yes  B. no  
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In general…..
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• We only need to compute the                          and 
then normalize 

•This can be framed in terms of operations between 
factors (that satisfy the semantics of probability)
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Lecture Overview

• Recap Bnets

• Bnets Inference

• Intro

• Factors

• Variable elimination Algo



Factors

• A factor is a representation of a function from a 
tuple of random variables into a number.

• We will write factor f on variables X1,… ,Xj as    

• A factor can denote:
• One distribution
• One partial distribution
• Several distributions 
• Several partial distributions 
over the given tuple of variables



Factor: Examples
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X1 X2 f(X1 , X2)

T T .12

T F .08

F T .08

F F .72

X1 X2
f(X1) X2= F

T F .08

F F .72

P(X1, X2) is a factor f(X1, X2)

P(X1, X2 = v2) is a factor f(X1) X2= v2

Distribution

Partial distribution
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Factors: More Examples
• A factor denotes one or more (possibly partial) 

distributions over the given tuple of variables

X Y Z val

t t t 0.1

t t f 0.9

t f t 0.2

f(X,Y,Z) ?? t f f 0.8

f t t 0.4

f t f 0.6

f f t 0.3

f f f 0.7

Distribution• e.g., P(X1, X2) is a factor f(X1, X2)

• e.g., P(X1, X2, X3 = v3) is a factor 
f(X1, X2) X3 = v3

• e.g.,  P(X | Z,Y) is a factor
f(X,Z,Y)

• e.g., P(X1, X3 = v3 | X2) is a factor 
f(X1, X2 ) X3 = v3

Partial distribution

Set of Distributions

Set of  partial 
Distributions

C. P(Z|X,Y)

A.  P(X,Y,Z) B. P(Y|Z,X)

D. None of the above
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Factors
• A factor is a representation of a function from a 

tuple of random variables into a number.
• We will write factor f on variables X1,… ,Xj as    

• A factor denotes one or more (possibly partial) distributions 
over the given tuple of variables

X Y Z val

t t t 0.1

t t f 0.9

t f t 0.2

f(X,Y,Z) t f f 0.8

f t t 0.4

f t f 0.6

f f t 0.3

f f f 0.7

Distribution• e.g., P(X1, X2) is a factor f(X1, X2)

• e.g., P(X1, X2, X3 = v3) is a factor 
f(X1, X2) X3 = v3

• e.g.,  P(X | Z,Y) is a factor
f(X,Z,Y)

• e.g., P(X1, X3 = v3 | X2) is a factor 
f(X1, X2 ) X3 = v3

Partial distribution

Set of Distributions

Set of  partial 
Distributions

P(Z|X,Y)
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Manipulating Factors:
We can make new factors out of an existing factor

• Our first operation: we can assign some or all of the 
variables of a factor.

X Y Z val

t t t 0.1

t t f 0.9

t f t 0.2

f(X,Y,Z): t f f 0.8

f t t 0.4

f t f 0.6

f f t 0.3

f f f 0.7

What is the result of  
assigning   X= t   ?

f(X=t,Y,Z)

f(X, Y, Z)X = t
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More examples of assignment
X Y Z val

t t t 0.1

t t f 0.9

t f t 0.2

r(X,Y,Z): t f f 0.8

f t t 0.4

f t f 0.6

f f t 0.3

f f f 0.7

Y Z val

t t 0.1

r(X=t,Y,Z): t f 0.9

f t 0.2

f f 0.8

Y val

r(X=t,Y,Z=f): t

f

r(X=t,Y=f,Z=f): val
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Summing out a variable example

B A C val

t t t 0.03

t t f 0.07

f t t 0.54

f t f 0.36

f3(A,B,C): t f t 0.06

t f f 0.14

f f t 0.48

f f f 0.32

A C val

t t

Bf3(A,B,C): t f

f t

f f

Our second operation: we can sum out a variable, say 
X1 with domain {v1, …,vk} , from factor f(X1, …,Xj), 
resulting in a factor on X2, …,Xj defined by:
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Multiplying factors

A B C val

t t t

t t f

t f t

f1(A,B)× f2(B,C): t f f

f t t

f t f

f f t

f f f

A B Val

t t 0.1

f1(A,B): t f 0.9

f t 0.2

f f 0.8

B C Val

t t 0.3

f2(B,C): t f 0.7

f t 0.6

f f 0.4

•Our third operation: factors can be multiplied together.
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Multiplying factors

A B C val

t t t

t t f

t f t ??

f1(A,B)× f2(B,C): t f f

f t t

f t f

f f t

f f f

A B Val

t t 0.1

f1(A,B): t f 0.9

f t 0.2

f f 0.8

B C Val

t t 0.3

f2(B,C): t f 0.7

f t 0.6

f f 0.4

•Our third operation: factors can be multiplied together.

C. 0.24

A.  0.32 B. 0.54

D. 0.06
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Multiplying factors: Formal

•The  product of factor f1(A, B) and f2(B, C), where B is the variable 
in common, is the factor (f1 × f2)(A, B, C) defined by:

),,)((),(),( 2121 CBAffCBfBAf 

Note1: it's defined on all  A, B, C triples, obtained by multiplying 
together the appropriate pair of entries from f1 and f2 .

Note2: A, B, C can be sets of variables
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Factors Summary

• A factor is a representation of a function from a tuple of random 
variables into a number.

• f(X1,… ,Xj).
• We have defined three operations on factors:

1.Assigning one or more variables

• f(X1=v1, X2, …,Xj) is a factor on X2, …,Xj , also written as
f(X1, …, Xj)X1=v1

2.Summing out variables is a factor on X2, …,Xj

• X1
f(X1,X2, .. ,Xj) = f(X1=v1, X2, ,Xj) + … + f(X1=vk, X2, ,Xj)

3.Multiplying factors

• f1(A, B) f2 (B, C) = (f1 × f2)(A, B, C) 
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Lecture Overview

• Recap Bnets

• Bnets Inference

• Intro

• Factors

• Intro Variable elimination Algo
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Variable Elimination Intro
• Suppose the variables of the belief network are X1,…,Xn.

• Z is the query variable

•Y1=v1, …, Yj=vj are the observed variables (with their values)

• Z1, …,Zk are the remaining variables

• What we want to compute: ),,|( 11 jj vYvYZP  

• We showed before that what we actually need to compute is 

),,,( 11 jj vYvYZP  

This can be computed in terms of operations between factors
(that satisfy the semantics of probability)
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Variable Elimination Intro
• If we express the joint as a factor,

f (Z,  Y1…,Yj ,   Z1…,Zj   )

• We can compute P(Z,Y1=v1, …,Yj=vj) by  ??

•assigning Y1=v1, …, Yj=vj 

•and summing out the variables Z1, …,Zk
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Are we done?
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Learning Goals for today’s class

You can:

• Define factors. Derive new factors from 
existing factors. Apply operations to factors, 
including assigning, summing out and multiplying 
factors. 

• (Minimally) Carry out variable elimination by 
using factor representation and using the factor 
operations. Use techniques to simplify variable 
elimination. 
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Next Class

Variable Elimination

• The algorithm

• An example

Temporal models

• Work on Practice Exercises 6A and 6B

• Assignment 3 is due on Tue the 20th !

• Assignment 4 will be available on Tue.

Course Elements


