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Key points Recap

We model the environment as a set of *--/2ndow ver s

)<4_""><V) OFD ?CXG_KV\>
Why the joint is not an adequate representation ?

“Representation, Feasoni ing”
Representation, reasoning and learning are

“exponential” in VoS

Solution: Exploit marginal&conditional independence
R IT)- G TGRIT oo P 2)

But how does independence allow us to simplify the joint?
CHAIN RULE L
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Lecture Overview

- Belief Networks
* Build sample BN

* Intro Inference, Compactness, Semantics

" More Examples
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Belief Nets: Burglary Example

There might be a bu\rg_l_aLin my house
B

The anti—burglar alarm in my house may go off

A

I have an agreement with two of my neighbors, John and Mary,
that they call me if they hear the alarm go off when I am at

work e _\T.

Minor earthquakes may occur and sometimes the set off the

alarm. E

B AMY E w=5
g5 4
4 N

entries/probs

Variables:

Joint has L



Belief Nets: Simplify the joint

Typically order vars to reflect causal knowledge (i.e.,

causes before effects) g =
* A burglar (B) can set the alarm (A) off N .
- An earthquake (E) can set the alarm (A) off A
* The alarm can cause Mary to call (M) / \
* The alarm can cause John to call (J) /M T
FC%LE/ A/ Ml U—B deg 'Y‘o\’}\
REGH > adel

Apply Chain Rule

(&) P(g\/g’fF(A | RE} ?(Xl)/-\y@?@ WAE@

Simplify according to marginal&conditional
iIndependence




Belief Nets: Structure + Probs
= P(B)+P(E) « PAIB,E) « P(11]A)+P(3 |A)

Express remaining dependencies as a network
* Each var is a node

* For each var, the conditioning vars are its parents
* Associate to each node corresponding conditional

probabilities ”’(E)L/

£t
\@/”‘“\ o
<\ P\)é ¥ (H
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 Directed Acyclic Graph (DAG) Siide 7
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y@s» Burglary: complete BN (&)
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Lecture Overview

* Belief Networks

" Intro Inference, Compactness, Semantics
" More Examples
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be
answered by processing the joint!

(Ex1) I'm at work,
= neighbor John calls to say my alarm is ringing,

> neighbor Mary doesn't call.

" No news of any earthquakes. ;E‘l
* Is there a burglar?

(Ex2) I'm at work, (& @ @
* Receive message that neighbor John called ,
* News of minor earthquakes. @ /(9

* Is there a burglar? p@@@ ;‘E‘l

Set digital places to monitor to 5 @
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be
answered by processing the joint!

(Ex1) I'm at work,

* neighbor John calls to say my alarm is ringing,
* neighbor Mary doesn't call.

* No news of any earthquakes. —

* Is there a burglar?

@ :F The probability of Burglar will:
A. Go down

B. Remain the same
C. Go up
_F
@:T @ CPSC 322, Lecture 27 Slide 1



Bayesian Networks — Inference Types

Diagnostic Predictive Intercausal Mixed
|Burg|ary | |Burg|ary | P(E) =1.0 Earthquake |
P(B) = 0.001 P(B) = 1.0 | Earthquake | )
016 P(—E)=1.0
Alarm Alarm |Burg|ary |
P(B) = 0.001 P(A) = 0.003
0.003 0.033
JohnCalls
JohnCalls | | JohnCalls | |
P(J) = 1.0 P(J) = 0.01 P(M) = 1.0
,(\ 0.66
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P(B=T) | P(B=F)
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jo'/w\ C,all S

/

BNnets: Compactness
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5o BNets: Compactness

CO\‘\ \O‘\\TU(
o2 K OO0 O D
?i(’bw\a 1 W/ K
In General: XA ¢

Afor boolean M/{ boolean parents has _Z_-__ rows for
the combinations of parent values

Each row requires one number p; for X. = true
(the number for X = false is just 7-p,)

ff—or exch node

If each variable has no more t parents, the complete network
requires O( N 2_6‘ umbers

For k<< n, this is a substantial improvement,

* the numbers required Qow linearly with n;} O(2") for the
full joint distribution
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of
conditional distributions:

RSt

PX, - X)=J,_., PX.[X, .. .X_.) (chain rule)

Simplify according to marginal&conditional independence

 Express remaining dependencies as a network

* Each var is a node
* For each var, the conditioning vars are its parents

X

* Associate to each node corresponding conditional
probabilities
Y, .

v
PX, - X)=J,._.,P ()(//@reﬂfs@g
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BNets: Construction General Semantics
(cont’)

n

PX, . X)=Jl._,P X/ Parents(X))

 Every node is independent from its non—descendants

%@f 5

S N\
VIV
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Lecture Overview

* Belief Networks
* Build sample BN

* Intro Inference, Compactness, Semantics

* More Examples
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Other Examples: Fire Diagnosis
(textbook Ex. 6.10)

Suppose you want to diagnose
whether there is a fire in a ‘P@/\ ?( }
building _

you receive a noisy report about
whether everyone is leaving the

if everyone is leaving, this may |

P[s rB

have been caused by a fire alarm. U P(LM

if there is a fire alarm, it may

have been caused by a fire or by Leonw
tampering

iIf there is a fire, there may be \‘/ P(R | L‘>

smoke raising from the bldg. @
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Other Examples (cont’ )
AJ)space

Make sure you explore and understand the Fire
Diagnosis example (we’ Il expand on it to study
Decision Networks)

Electrical Circuit example (textbook ex 6.11) p@@@

A
(&
Patient’ s wheezing and coughing example (ex.

6.14)
p@@@
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Source: Onisko et al.
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Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999
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Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Assuming there are ~60 nodes in this Bnet with max
number of parents =4; and assuming all nodes are binary,
how many numbers are required for the JPD vs BNet
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Answering Query under Uncertainty

Probability Theory I =

Dynamic Bayesian
Network

Belieetwork

QO

| Static

ariable Elimination

I Hidde: Markov Models L/
S R
=)
(e.g credit cards) ‘ / tutoring Systems
Natural J [ (,10\;; Wn“ KV\@W
Conguge \mm o ol Ko 2|
Diagnostic Processing .
Systems (e.g., ‘ Some AP’P‘\CQ‘E}OV,
medicine) 4 S
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Learning Goals for today’ s class

You can:

Build a Belief Network for a simple domain

Classify the types of inference
D\><&M03Jf\c ‘ Preo\{a\—\'ve/ //rv\'\'@rCstSD) | H\%acl

Compute the representational saving in terms on
number of probabilities required
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Next Class (Wednesday!)

Bayesian Networks Representation
Additional Dependencies encoded by BNets
More compact representations for CPT &—

Very simple but extremely useful Bnet (Bayes
Classifier)
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Belief network summary

A belief network is a directed acyclic graph (DAG)
that effectively expresses independence assertions
among random variables.

The parents of a node X are those variables on
which X directly depends.

Consideration of causal dependencies among
variables typically help in constructing a Bnet
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