
CPSC 322, Lecture 6 Slide 1 

Uniformed Search (cont.) 
Computer Science cpsc322, Lecture 6 

(Textbook finish 3.5) 

 

Sept, 17, 2012 



CPSC 322, Lecture 6 Slide 2 

Lecture Overview 

 

• Recap DFS vs BFS 

 

• Uninformed Iterative Deepening (IDS) 

 

• Search with Costs 

 

 

 

 



CPSC 322, Lecture 6 Slide 3 

Recap: Graph Search Algorithm  
 

 

 

In what aspects DFS and BFS differ when we look at the 

generic graph search algorithm?  

 

 

Input: a graph, a start node, Boolean procedure goal(n) that tests if n is a 

goal node 

frontier:= [<s>: s is a start node];  

While frontier  is not empty: 

      select and remove path  <no,….,nk> from frontier;  

      If goal(nk)  

              return <no,….,nk>;  

For every neighbor n of nk 

        add <no,….,nk, n> to frontier; 

end 



 

 

 

When to use BFS vs. DFS? 

4 

• The search graph has cycles or is infinite 

 

• We need the shortest path to a solution 

 
• There are only solutions at great depth 

 

 

• There are some solutions at shallow depth 

 

 

• Memory is limited 

BFS DFS 

BFS DFS 

BFS DFS 

BFS DFS 

BFS DFS 



CPSC 322, Lecture 6 Slide 5 

Lecture Overview 

 

• Recap DFS vs BFS 

 

• Uninformed Iterative Deepening (IDS) 

 

• Search with Costs 

 

 

 

 



CPSC 322, Lecture 6 Slide 6 

Iterative Deepening (sec 3.6.3) 

How can we achieve an acceptable (linear) space 

complexity maintaining completeness and optimality? 
 
 

 

Key Idea: let’s re-compute elements of the frontier rather 

than saving them. 
 

Complete Optimal Time Space 

DFS 

BFS 



CPSC 322, Lecture 6 Slide 7 

Iterative Deepening in Essence 

 

• Look with DFS for solutions at depth 1, then 2, then 3, 

etc. 
 

• If a solution cannot be found at depth D, look for a 

solution at depth D + 1.  

 

• You need a depth-bounded depth-first searcher. 
 

• Given a bound B you simply assume that paths of length 

B cannot be expanded…. 



CPSC 322, Lecture 6 Slide 8 

 
depth = 1 
 

 

depth = 2 

 

 

 

 

depth = 3 

. . . 



(Time) Complexity of Iterative Deepening 
Complexity of solution at depth m with branching factor b 

 
Total # of paths 

at that level 

#times created by 

BFS (or DFS) 
#times created 

by IDS 



CPSC 322, Lecture 6 Slide 10 

(Time) Complexity of Iterative Deepening 
Complexity of solution at depth m with branching factor b 

 
Total # of paths generated 

bm + 2 bm-1 + 3 bm-2 + ..+ mb =  

bm (1+ 2 b-1 + 3 b-2 + ..+m b1-m )≤ 

)(
1

)(

2

1

1 mm

i

im bO
b

b
bibb 




















CPSC 322, Lecture 6 Slide 11 

Lecture Overview 

 

• Recap DFS vs BFS 

 

• Uninformed Iterative Deepening (IDS) 

 

• Search with Costs 

 

 

 

 



CPSC 322, Lecture 6 Slide 12 

Example: Romania 



CPSC 322, Lecture 6 Slide 13 

Search with Costs 

Sometimes there are costs associated with arcs. 

Definition (cost of a path) 

The cost of a path is the sum of the costs of its arcs: 

 

 

 

 

Definition (optimal algorithm) 

A search algorithm is optimal if it is complete, and only returns 

cost-minimizing solutions. 

In this setting we often don't just want to find just any solution 

• we usually want to find the solution that minimizes cost 

  ),cost(,,cost
1

10 



k

i

iik nnnn 



CPSC 322, Lecture 6 Slide 14 

Lowest-Cost-First Search 
 

 

 

• At each stage, lowest-cost-first search selects a path on the 

frontier with lowest cost. 

• The frontier is a priority queue ordered by path cost 

• We say ``a path'' because there may be ties 

 

• Example of  one step for LCFS:  

• the frontier is [p2, 5, p3, 7 , p1, 11, ]  

• p2 is the lowest-cost node in the frontier 

• “neighbors” of p2 are {p9, 10, p10, 15} 

• What happens? 

• p2 is selected, and tested for being a goal. 

• Neighbors of p2 are inserted into the frontier 

• Thus, the frontier is now [p3, 7 , p9, 10, p1, 11,  p10, 15]. 

• ?         ? is selected next. 

• Etc. etc. 



• When arc costs are equal LCFS is equivalent to.. 

None of the above 

DFS 

IDS 

BFS 



CPSC 322, Lecture 6 Slide 16 

Analysis of Lowest-Cost Search (1) 
 

 

 
• Is LCFS complete? 

• not in general: a cycle with zero or negative arc costs 

could be followed forever. 

• yes, as long as arc costs are strictly positive 

 

 

• Is LCFS optimal? 

• Not in general.  Why not? 

• Arc costs could be negative: a path that initially looks 

high-cost could end up getting a ``refund''. 

• However, LCFS is optimal if arc costs are guaranteed 

to be non-negative. 



CPSC 322, Lecture 6 Slide 17 

Analysis of Lowest-Cost Search 
 

 

 
• What is the time complexity, if the maximum path length is 

m and the maximum branching factor is b? 

• The time complexity is O(bm): must examine every 

node in the tree. 

• Knowing costs doesn't help here.  

 

 

• What is the space complexity? 

• Space complexity is O(bm): we must store the whole 

frontier in memory. 



• Apply basic properties of search algorithms: 

completeness, optimality, time and space 

complexity of search algorithms.  

 

 

 

 

CPSC 322, Lecture 5 Slide 18 

Learning Goals for Search  (up to today) 

Complete Optimal Time Space 

DFS 

BFS 



• Select the most appropriate search algorithms for 

specific problems.  

• BFS vs DFS vs IDS vs BidirS-  

• LCFS vs. BFS –  

• A* vs. B&B vs IDA* vs MBA* 

 

• Define/read/write/trace/debug different 

search algorithms   

• With / Without cost 

• Informed / Uninformed 
CPSC 322, Lecture 5 Slide 19 

Learning Goals for Search (cont’)  

(up to today) 



CPSC 322, Lecture 6 Slide 20 

Beyond uninformed search….  

• So far the selection of the next path to 

examine (and possibly expand) is based on 

…. 



CPSC 322, Lecture 6 Slide 21 

Next Class 

• Start Heuristic Search  

(textbook.: start 3.6) 


