
CPSC 322, Lecture 5 Slide 1

Uninformed Search
Computer Science cpsc322, Lecture 5

(Textbook Chpt 3.5)

Sept, 14, 2012

CPSC 322, Lecture 4 Slide 2

• Search is a key computational mechanism in

many AI agents

• We will study the basic principles of search on the

simple deterministic planning agent model

Generic search approach:

• define a search space graph,

• start from current state,

• incrementally explore paths from current state until goal

state is reached.

Recap

CPSC 322, Lecture 5 Slide 3

Searching: Graph Search Algorithm with three bugs 

 Input: a graph,

 a start node,

 Boolean procedure goal(n) that tests if n is a goal node.

frontier := { g: g is a goal node };

while frontier is not empty:

 select and remove path n0, n1, …, nk from frontier;

 if goal(nk)

 return nk ;

 for every neighbor n of nk

 add  n0, n1, …, nk  to frontier;

end while

• The goal function defines what is a solution.

• The neighbor relationship defines the graph.

• Which path is selected from the frontier defines the

search strategy.

CPSC 322, Lecture 5 Slide 4

Lecture Overview

• Recap

• Criteria to compare Search Strategies

• Simple (Uninformed) Search

Strategies

• Depth First

• Breadth First

CPSC 322, Lecture 5 Slide 5

Comparing Searching Algorithms: will it find a

solution? the best one?

Def. (complete): A search algorithm is complete if,

whenever at least one solution exists, the algorithm

is guaranteed to find a solution within a finite

amount of time.

Def. (optimal): A search algorithm is optimal if, when

it finds a solution , it is the best solution

CPSC 322, Lecture 5 Slide 6

Comparing Searching Algorithms: Complexity

Def. (time complexity)

The time complexity of a search algorithm is an expression for

the worst-case amount of time it will take to run,

• expressed in terms of the maximum path length m and the

maximum branching factor b.

Def. (space complexity) : The space complexity of a search

algorithm is an expression for the worst-case amount of

memory that the algorithm will use (number of nodes),

• Also expressed in terms of m and b.

CPSC 322, Lecture 5 Slide 7

Lecture Overview

• Recap

• Criteria to compare Search Strategies

• Simple (Uninformed) Search

Strategies

• Depth First

• Breadth First

CPSC 322, Lecture 5 Slide 8

Depth-first Search: DFS

• Depth-first search treats the frontier as a stack

• It always selects one of the last elements added

to the frontier.

Example:

• the frontier is [p1, p2, …, pr]

• neighbors of last node of p1 (its end) are {n1, …, nk}

• What happens?
• p1 is selected, and its end is tested for being a goal.

• New paths are created attaching {n1, …, nk} to p1

• These “replace” p1 at the beginning of the frontier.

• Thus, the frontier is now [(p1, n1), …, (p1, nk), p2, …, pr] .

• NOTE: p2 is only selected when all paths extending p1 have been

explored.

CPSC 322, Lecture 5 Slide 9

Depth-first search: Illustrative Graph --- Depth-first Search Frontier

CPSC 322, Lecture 5 Slide 10

Depth-first Search: Analysis of DFS

• Is DFS complete?

• Is DFS optimal?

• What is the time complexity, if the maximum path length is m

and the maximum branching factor is b ?

• What is the space complexity?

Yes No

O(b+m) O(bm) O(bm) O(mb)

Yes No

O(b+m) O(bm) O(bm) O(mb)

CPSC 322, Lecture 5 Slide 11

Depth-first Search: Analysis of DFS

• Is DFS complete?

• Depth-first search isn't guaranteed to halt on graphs with cycles.

• However, DFS is complete for finite acyclic graphs.

• Is DFS optimal?

• What is the time complexity, if the maximum path length is m

and the maximum branching factor is b ?

• The time complexity is ? ?: must examine every node in the

tree.

• Search is unconstrained by the goal until it happens to stumble on the

goal.

• What is the space complexity?

• Space complexity is ? ? the longest possible path is m, and for

every node in that path must maintain a fringe of size b.

 Analysis of DFS

Def. : A search algorithm is complete if whenever there is at

least one solution, the algorithm is guaranteed to find it

within a finite amount of time.

Is DFS complete? No

• If there are cycles in the graph, DFS may get “stuck” in one of them

• see this in AISpace by loading “Cyclic Graph Examples” or by

adding a cycle to “Simple Tree”

• e.g., click on “Create” tab, create a new edge from N7 to N1, go back

to “Solve” and see what happens

http://www.aispace.org/mainTools.shtml

 Analysis of DFS

13

Is DFS optimal? Yes No

Def.: A search algorithm is optimal if when it finds a solution, it

is the best one (e.g., the shortest)

• E.g., goal nodes: red boxes

 Analysis of DFS

14

Is DFS optimal? No

Def.: A search algorithm is optimal if when it finds a solution, it

is the best one (e.g., the shortest)

• It can “stumble” on longer solution

paths before it gets to shorter ones.

• E.g., goal nodes: red boxes

• see this in AISpace by loading “Extended Tree Graph” and set N6 as a goal

• e.g., click on “Create” tab, right-click on N6 and select “set as a goal node”

 Analysis of DFS

15

• What is DFS’s time complexity, in terms of m and b ?

• E.g., single goal node -> red box

Def.: The time complexity of a search algorithm is

 the worst-case amount of time it will take to run,

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

 Analysis of DFS

16

• What is DFS’s time complexity, in terms of m and b ?

• In the worst case, must examine

every node in the tree

• E.g., single goal node -> red box

Def.: The time complexity of a search algorithm is

 the worst-case amount of time it will take to run,

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(bm)

 Analysis of DFS

17

Def.: The space complexity of a search algorithm is the

worst-case amount of memory that the algorithm will use

 (i.e., the maximal number of nodes on the frontier),

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

• What is DFS’s space complexity, in terms of m and b ?

See how this

works in

http://www.aispace.org/mainTools.shtml

 Analysis of DFS

18

Def.: The space complexity of a search algorithm is the

 worst-case amount of memory that the algorithm will use

 (i.e., the maximum number of nodes on the frontier),

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(bm)

• What is DFS’s space complexity, in terms

of m and b ?

- for every node in the path currently explored, DFS

maintains a path to its unexplored siblings in the

search tree

- Alternative paths that DFS needs to explore

- The longest possible path is m, with a maximum of

b-1 alterative paths per node

See how this

works in

http://www.aispace.org/mainTools.shtml

CPSC 322, Lecture 5 Slide 19

Depth-first Search: Analysis of DFS

• Is DFS complete?

• Depth-first search isn't guaranteed to halt on graphs with cycles.

• However, DFS is complete for finite acyclic graphs.

• Is DFS optimal?

• What is the time complexity, if the maximum path length is m

and the maximum branching factor is b ?

• The time complexity is ? ?: must examine every node in the

tree.

• Search is unconstrained by the goal until it happens to stumble on the

goal.

• What is the space complexity?

• Space complexity is ? ? the longest possible path is m, and for

every node in that path must maintain a fringe of size b.

CPSC 322, Lecture 5 Slide 20

Appropriate

• Space is restricted (complex state representation e.g.,

robotics)

• There are many solutions, perhaps with long path lengths,

particularly for the case in which all paths lead to a

solution

Depth-first Search: When it is appropriate?

Inappropriate

• Cycles

• There are shallow solutions

CPSC 322, Lecture 5 Slide 21

Why DFS need to be studied and understood?

• It is simple enough to allow you to learn the basic

aspects of searching (When compared with

breadth first)

• It is the basis for a number of more sophisticated /

useful search algorithms

CPSC 322, Lecture 5 Slide 22

Lecture Overview

• Recap

• Simple (Uninformed) Search

Strategies

• Depth First

• Breadth First

CPSC 322, Lecture 5 Slide 23

Breadth-first Search: BFS

• Breadth-first search treats the frontier as a queue

• it always selects one of the earliest elements added to the frontier.

Example:

• the frontier is [p1,p2, …, pr]

• neighbors of the last node of p1 are {n1, …, nk}

• What happens?

• p1 is selected, and its end tested for being a path to the goal.

• New paths are created attaching {n1, …, nk} to p1

• These follow pr at the end of the frontier.

• Thus, the frontier is now [p2, …, pr, (p1, n1), …, (p1, nk)].

• p2 is selected next.

CPSC 322, Lecture 5 Slide 24

Illustrative Graph - Breadth-first Search

CPSC 322, Lecture 5 Slide 25

Breadth-first Search: Analysis of BFS

• Is BFS complete?

• Is DFS optimal?

• What is the time complexity, if the maximum path length is m

and the maximum branching factor is b ?

• What is the space complexity?

Yes No

O(b+m) O(bm) O(bm) O(mb)

Yes No

O(b+m) O(bm) O(bm) O(mb)

 Analysis of BFS

26

Def. : A search algorithm is complete if whenever there is at

least one solution, the algorithm is guaranteed to find it

within a finite amount of time.

Is BFS complete? Yes No

 Analysis of BFS

27

Is BFS optimal? Yes No

Def.: A search algorithm is optimal if

 when it finds a solution, it is the best one

• E.g., two goal nodes: red

boxes

 Analysis of BFS

28

• What is BFS’s time complexity, in terms of m and b ?

• E.g., single goal node: red box

Def.: The time complexity of a search algorithm is

 the worst-case amount of time it will take to run,

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

 Analysis of BFS

29

Def.: The space complexity of a search algorithm is the

 worst case amount of memory that the algorithm will use

 (i.e., the maximal number of nodes on the frontier),

 expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m) O(bm) O(bm) O(mb)

• What is BFS’s space complexity, in terms of m and b ?

- How many nodes at depth m?

CPSC 322, Lecture 5 Slide 30

Analysis of Breadth-First Search

• Is BFS complete?

• Yes

• In fact, BFS is guaranteed to find the path that involves the fewest

arcs (why?)

• What is the time complexity, if the maximum path length is

m and the maximum branching factor is b?

• The time complexity is ? ? must examine every node in the

tree.

• The order in which we examine nodes (BFS or DFS) makes no

difference to the worst case: search is unconstrained by the goal.

• What is the space complexity?

• Space complexity is ? ?

CPSC 322, Lecture 5 Slide 31

Using Breadth-first Search

• When is BFS appropriate?

• space is not a problem

• it's necessary to find the solution with the fewest arcs

• although all solutions may not be shallow, at least some

are

• When is BFS inappropriate?

• space is limited

• all solutions tend to be located deep in the tree

• the branching factor is very large

CPSC 322, Lecture 5 Slide 33

What have we done so far?

AI agents can be very complex and sophisticated

Let’s start from a very simple one, the deterministic,

goal-driven agent for which: he sequence of

actions and their appropriate ordering is the

solution

GOAL: study search, a set of basic methods

underlying many intelligent agents

We have looked at two search strategies DFS and BFS:

• To understand key properties of a search strategy

• They represent the basis for more sophisticated

(heuristic / intelligent) search

• Apply basic properties of search algorithms:

completeness, optimality, time and space

complexity of search algorithms.

• Select the most appropriate search algorithms for

specific problems.

• BFS vs DFS vs IDS vs BidirS-

• LCFS vs. BFS –

• A* vs. B&B vs IDA* vs MBA*
CPSC 322, Lecture 5 Slide 34

Learning Goals for today’s class

CPSC 322, Lecture 5 Slide 35

Next Class

• Iterative Deepening

• Search with cost

(read textbook.: 3.7.3, 3.5.3)

• (maybe) Start Heuristic Search

(textbook.: start 3.6)

To test your understanding of today’s class

• Work on First Practice Exercise 3.B

• http://www.aispace.org/exercises.shtml

CPSC 322, Lecture 6 Slide 36

Recap: Comparison of DFS and BFS

 Complete Optimal Time Space

DFS

BFS

