Decision Theory: Sequential Decisions

Computer Science cpsc322, Lecture 34

(Textbook Chpt 9.3)

<u>ل</u> ا

Nov, 28, 2012

"Single" Action vs. Sequence of Actions

Set of primitive decisions that can be treated as a single macro decision to be made before acting

- Agent makes observations
- Decides on an action
- Carries out the action

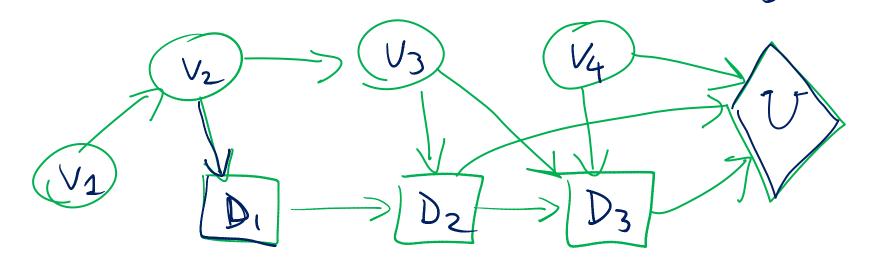
Lecture Overview

- Sequential Decisions
 - Representation
 - Policies
- Finding Optimal Policies

Sequential decision problems

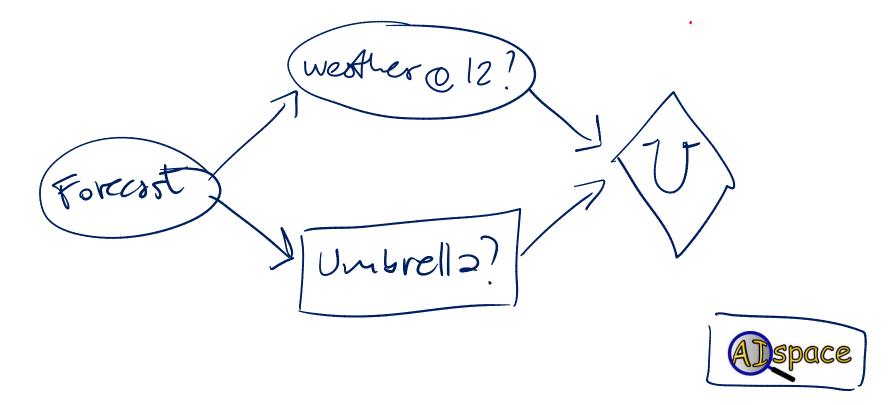
- A sequential decision problem consists of a sequence of decision variables D_1, \ldots, D_n
- Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made.

 PD3 = $\{D_2 \lor J_3 \lor J_4\}$



Sequential decisions: Simplest possible

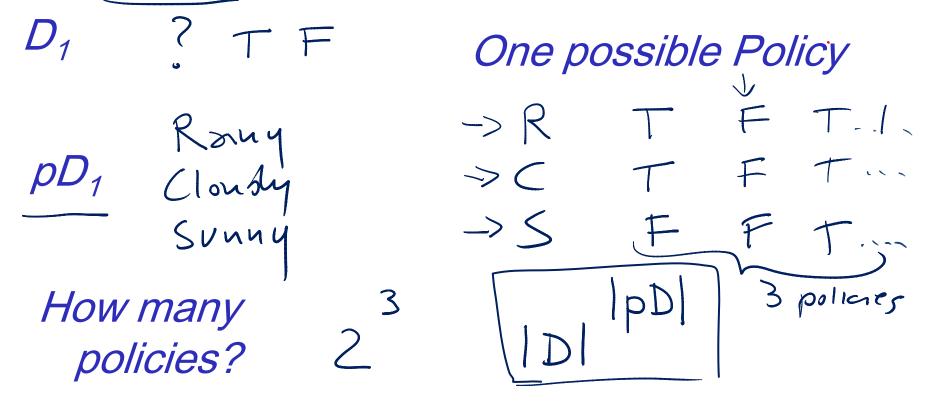
- Only one decision! (but different from one-off decisions)
- Early in the morning. Shall I take my umbrella today? (I'll have to go for a long walk at noon)
- Relevant Random Variables?



Policies for Sequential Decision Problem: Intro

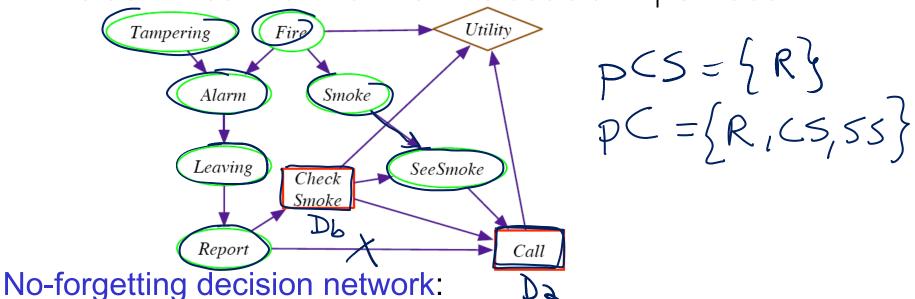
 A policy specifies what an agent should do under each circumstance (for each decision, consider the parents of the decision node)

In the *Umbrella* "degenerate" case:



Sequential decision problems: "complete" Example

- A sequential decision problem consists of a sequence of decision variables D_1, \ldots, D_n
- Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made.



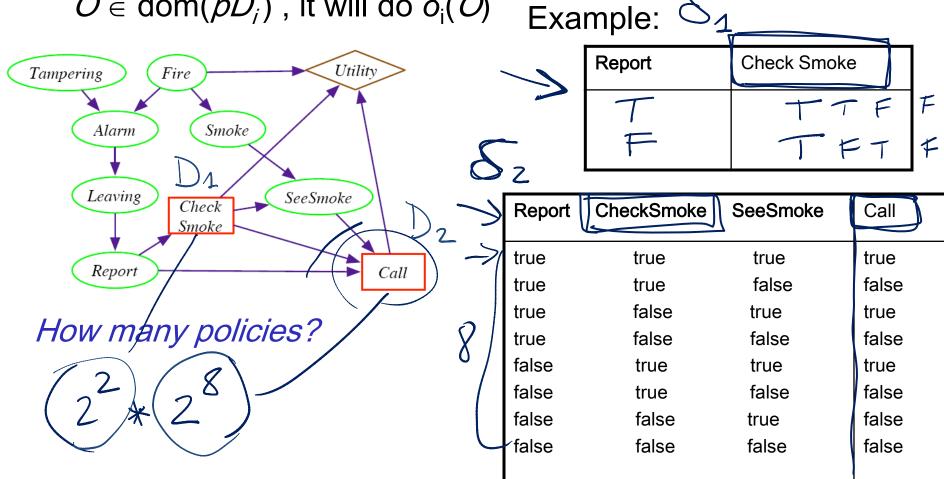
- decisions are totally ordered
- if a decision D_b comes before D_a , then
 - D_b is a parent of D_a
 - any parent of D_b is a parent of D_a

Policies for Sequential Decision Problems

• A policy is a sequence of $\delta_1, \ldots, \delta_n$ decision functions $\delta_i : dom(pD_i) \rightarrow dom(D_i)$

This policy means that when the agent has observed

 $O \in dom(pD_i)$, it will do $\delta_i(O)$



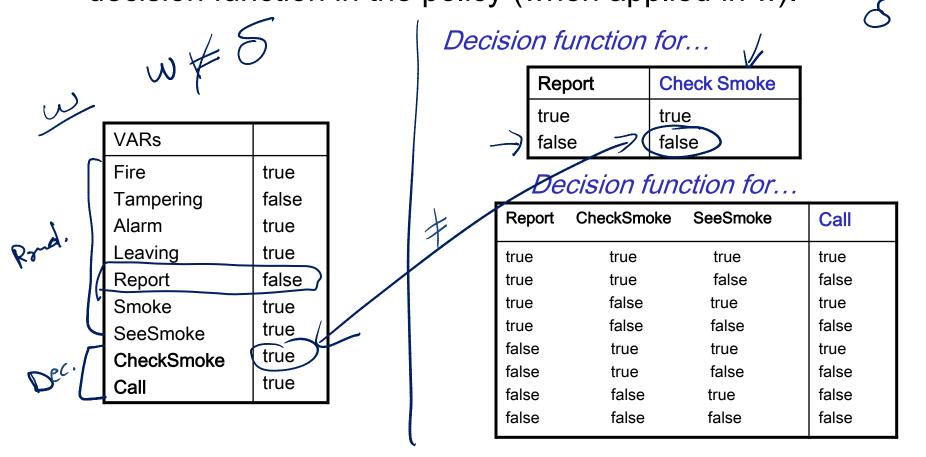
Lecture Overview

- Recap
- Sequential Decisions
- Finding Optimal Policies

When does a possible world satisfy a policy?

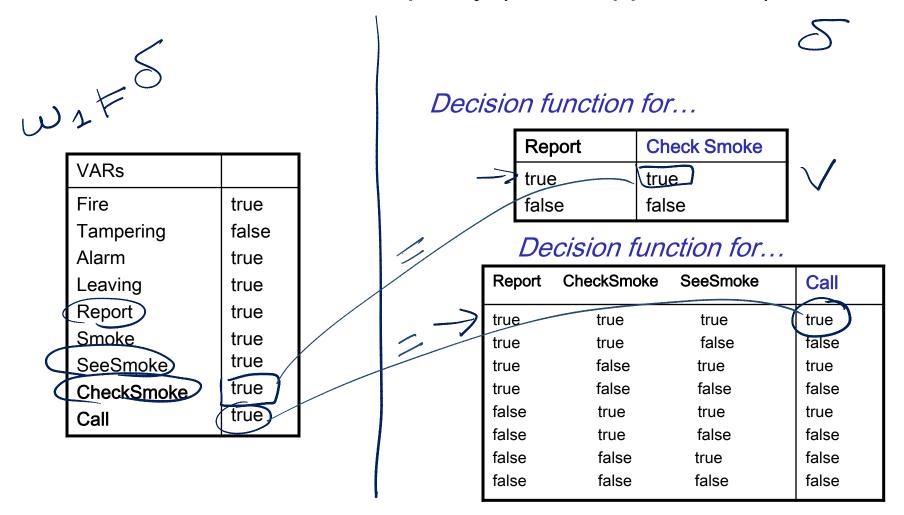
 A possible world specifies a value for each random variable and each decision variable.

• Possible world w satisfies policy δ , written $w \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in w).



When does a possible world satisfy a policy?

• Possible world w satisfies policy δ , written $w \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in w).



Expected Value of a Policy

- Each possible world w has a probability P(w) and a utility U(w)
- The expected utility of policy δ is

$$\sum_{w \neq \delta} P(w) * U(w)$$

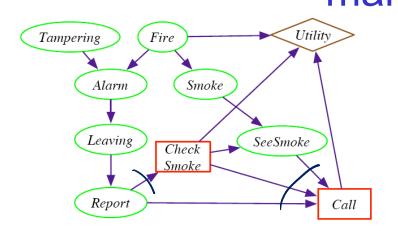
The optimal policy is one with the MAX expected utility.

Lecture Overview

- Recap
- Sequential Decisions
- Finding Optimal Policies (Efficiently)

Complexity of finding the optimal policy: how many policies?

How many assignments to parents?



$$C52 C 2^3$$

How many decision functions? (binary decisions)

How many policies? product
$$\frac{2}{2} + \frac{2}{2}$$

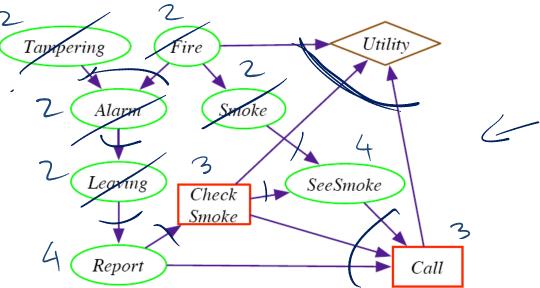
- If a decision *D* has *k* binary parents, how many assignments of values to the parents are there?
- If there are b possible actions (possible values for D), how many different decision functions are there?
- If there are d decisions, each with k binary parents and b possible actions, how many policies are there?

Finding the optimal policy more efficiently: VE

- 1. Create a factor for each conditional probability table and a create a factor for the utility.
- Sum out random variables that are not parents of a decision node.
- 3. Eliminate (aka sum out) the decision variables
- 4. Sum out the remaining random variables.

5. Multiply the factors: this is the expected utility of the optimal

policy.



Eliminate the decision Variables: step3 details

- Select a variable D that corresponds to the latest decision to be made
 - this variable will appear in only one factor with its parents
- Eliminate *D* by maximizing. This returns:
 - A new factor to use in VE, max_D f
 - The optimal decision function for D, arg max_D f
- Repeat till there are no more decision nodes.

Example: Eliminate CheckSmoke

Report	CheckSmoke	Value		
true	true	(-5.0)		
true	false	-5.6		
false	true	-23.7		
false	false	(-17.5)		

Report	Value	Neи
true	-5.9	
false	-17.5	Doo

New factor

Decision Function

Report	CheckSmoke
true	true L
false	tolse

VE elimination reduces complexity of finding the optimal policy

- We have seen that, if a decision D has k binary parents, there
 are b possible actions, If there are d decisions,
- Then there are: $(b^{2^k})^d$ policies
- Doing variable elimination lets us find the optimal policy after considering only d. below policies (we eliminate one decision at a time)
 - VE is much more efficient than searching through policy space.
 - However, this complexity is **still doubly-exponential** we'll only be able to handle relatively small problems.

+ give up nonforgetting somp + opprox. Sportty

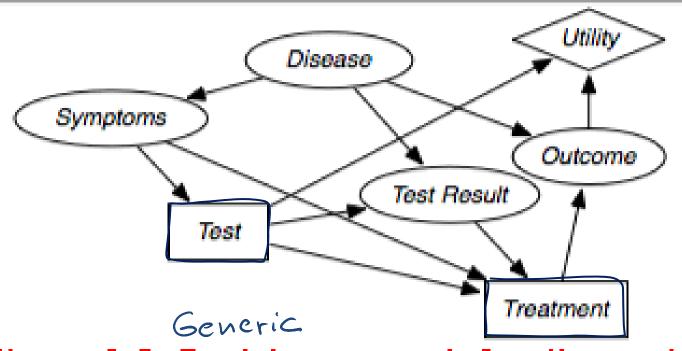


Figure 9.8: Decision network for diagnosis

to select what test to apply and then what treatment to prescribe

Learning Goals for today's class

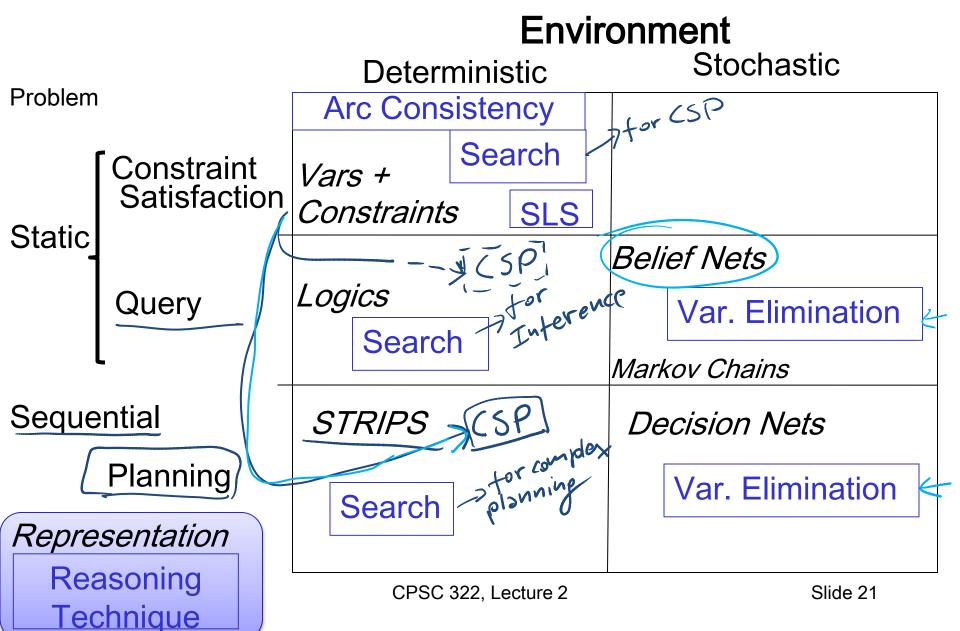
You can:

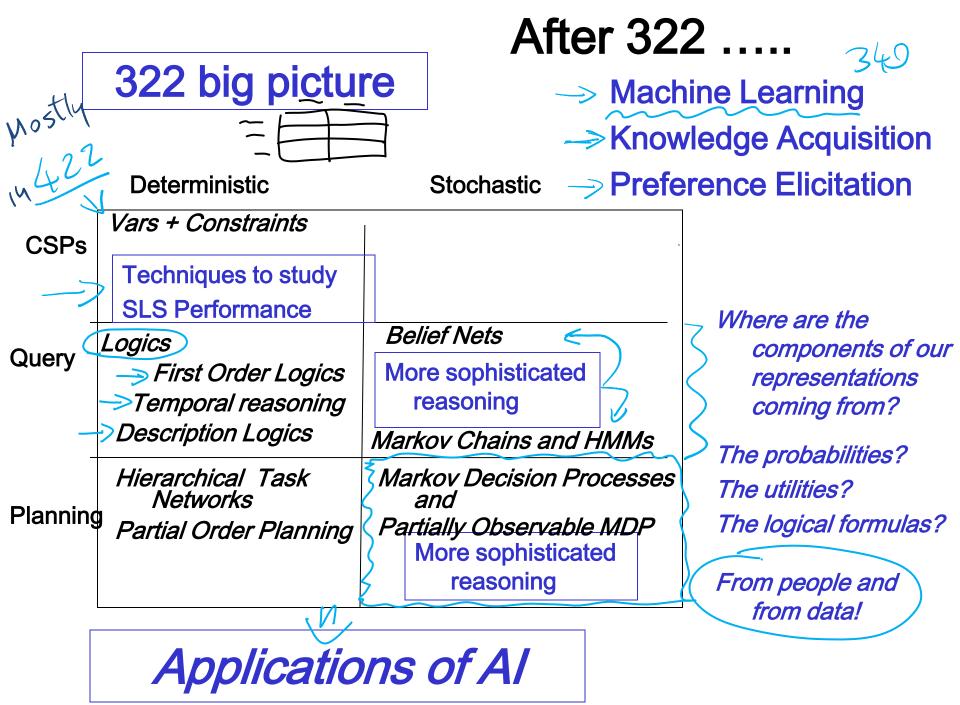
- Represent sequential decision problems as decision networks. And explain the non forgetting property
- Verify whether a possible world satisfies a policy and define the expected value of a policy
- Compute the <u>number of policies</u> for a decision problem
- Compute the optimal policy by Variable Elimination

Big Picture: Planning under Uncertainty



Cpsc 322 Big Picture





Announcements

Homework #4, due date: Fri Nov 30, 1PM.

You can drop it at my office (ICICS 105)or by handin.

FINAL EXAM: Thu Dec13, 3:30 pm (3 hours, PHRM 1101)

Final will comprise: 10 -15 short questions + 3-4 problems

- Work on all practice exercises (including 9.B) and sample problems
- While you revise the learning goals, work on review questions
 - I may even reuse some verbatim ©
- Come to remaining Office hours!
- Fill out Online Teaching Evaluations Survey.