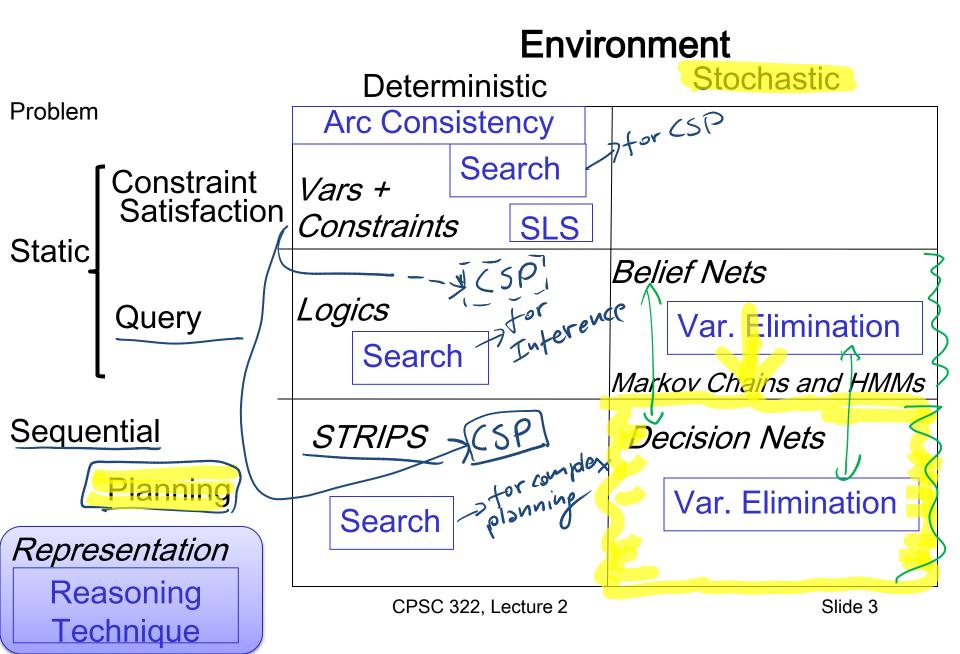
Decision Theory: Single Stage Decisions

Computer Science cpsc322, Lecture 33


(Textbook Chpt 9.2)

Nov 26, 2012

Lecture Overview

- Intro
- One-Off Decision Example
- Utilities / Preferences and optimal Decision
- Single stage Decision Networks

Planning in Stochastic Environments

Planning Under Uncertainty: Intro

- **Planning** how to select and organize a sequence of actions/decisions to achieve a given goal.
- Deterministic Goal: A possible world in which some propositions are true

- Planning under Uncertainty: how to select and organize a sequence of actions/decisions to "<u>maximize the probability</u>" of "achieving a given goal"
 - <u>Goal under Uncertainty</u>: we'll move from all-ornothing goals to a richer notion: rating how *happy* the agent is in different possible worlds.

"Single" Action vs. Sequence of Actions

Set of primitive decisions that can be treated as a single macro decision to be made before acting one-off

- Agents makes observations
- Decides on an action
- Carries out the action

Sequential Decisions

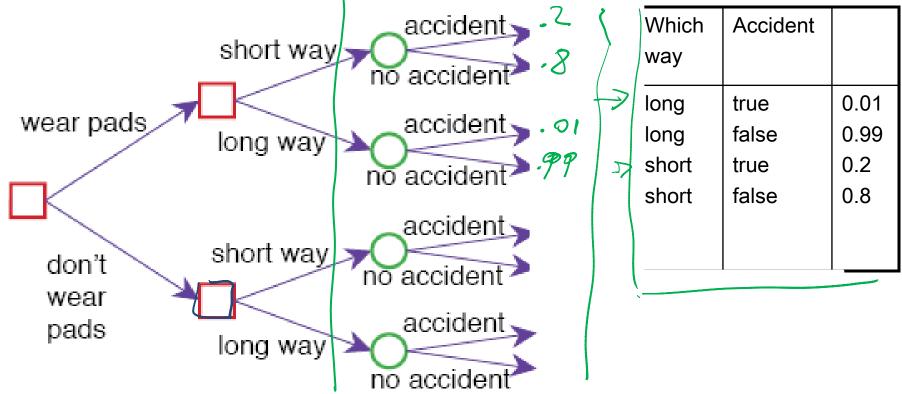
Lecture Overview

- Intro
- One-Off Decision Example
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks

One-off decision example

Delivery Robot Example not

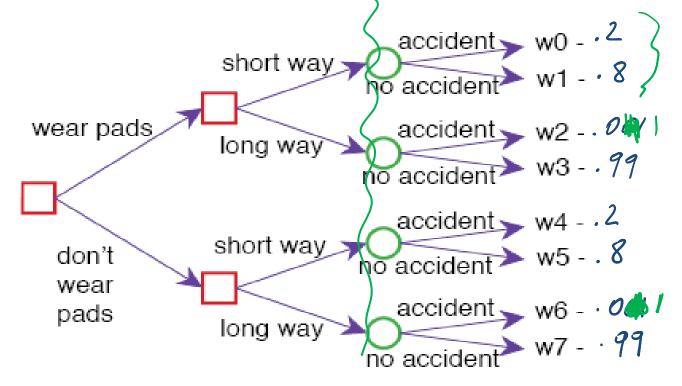
Ner


- Robot needs to reach a certain room
- Atolse (Going through stairs may cause an accident.
- It can go the short way through long stairs, or the long way through short stairs (that reduces the chance of an accident but takes more time)
- Which Woy long (1) P(A=t | WW=long) < P(A=t | WW= short (1) P(A=t | WW=long) < P(A=t | WW= short (1) Short

• The Robot can choose to wear pads to protect itself or not (to protect itself in case of an accident) but pads slow it down

pods f i i + A=t i If there is an accident the Robot does not get to the room

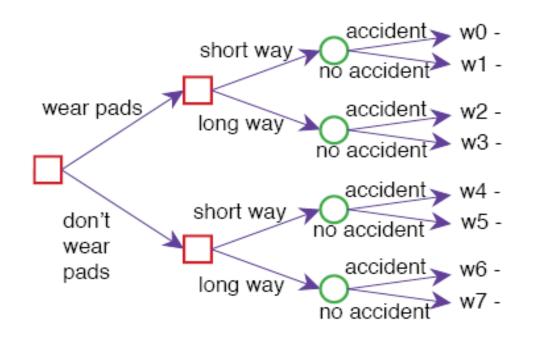
Decision Tree for Delivery Robot


This scenario can be represented as the following decision tree

- The agent has a set of decisions to make (a macro-action it can perform)
- Decisions can influence random variables
- Decisions have probability distributions over outcomes

Decision Variables: Some general Considerations

- A possible world specifies a value for each random variable and each decision variable.
- For each assignment of values to all decision variables, the probabilities of the worlds satisfying that assignment sum to 1.


Lecture Overview

- Intro
- One-Off Decision Problems
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks

What are the optimal decisions for our Robot?

It all depends on how happy the agent is in different situations.

For sure getting to the room is better than not getting there..... but we need to consider other factors..

Utility / Preferences

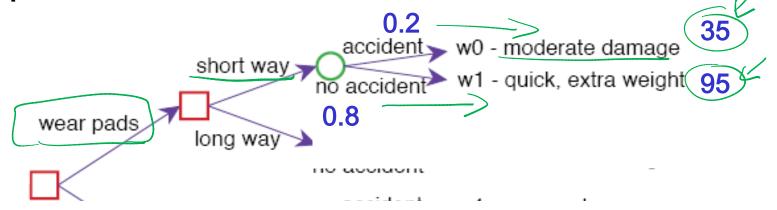
Utility: a measure of desirability of possible worlds to an agent

 Let U be a real-valued function such that U(w) represents an agent's degree of preference for world w. [0, 100]

Would this be a reasonable utility function for our Robot?

	Which way	Accident	Wear Pads	Utility	World
	short	true	true	35	w0, moderate damage
\rightarrow	short	false	true	95	w1, reaches room, quick, extra weight
-	long	true	true	30	w2, moderate damage, low energy
	long	false	true	75	w3, reaches room, slow, extra weight
	short	true	false	3	w4, severe damage
\rightarrow	short	false	false	100	w6, severe damage, low energy Worst?
	long true	faise	false	0	w6, severe damage, low energy
コ	long	true	false	80	w7, reaches room, slow
~/	t	olse			

Utility: Simple Goals

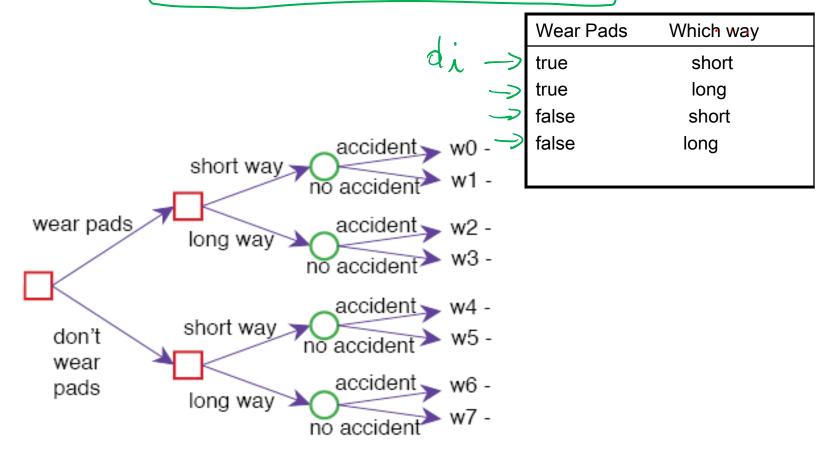

• Can simple (boolean) goals still be specified? avoid : ⁴ reaching the room⁴ Accident

V	Which way	Accident	Wear Pads	Utility
	long	true	true	Ø
	long	true	false	0
	long	false	true	100
\succ	long	false	false	100
	short	true	true	0
\sim	short	true	false	\bigcirc
~	short	false	true	102
	short	false	false	100

must be talse

Optimal decisions: How to combine Utility with Probability

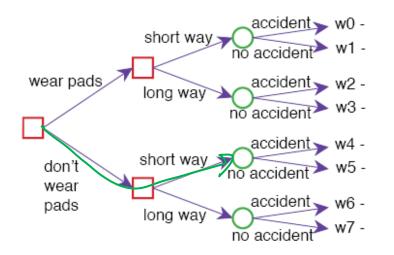
What is the **utility** of achieving a certain **probability distribution** over **possible worlds**?


 It is its <u>expected utility/value i.e.</u>, its average utility, weighting possible worlds by their probability.

$$EU(wP=t, WW = short) = .2 \times 35 + .8 \times 95$$

Optimal decision in one-off decisions

 Given a set of *n* decision variables var_i (e.g., Wear Pads, Which Way), the agent can choose:


 $D = d_i$ for any $d_i \in \text{dom}(var_1) \times ... \times \text{dom}(var_n)$

Optimal decision: Maximize Expected Utility

• The expected utility of decision $D = d_i$ is

$$\mathbb{E}(U \mid D = d_i) = \sum_{w \models D = d_i} P(w \mid D = d_i) U(w)$$

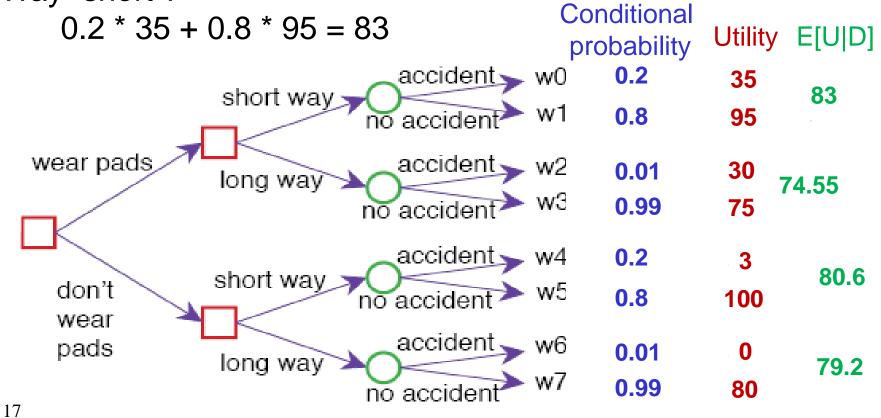
e.g.,
$$\mathbb{E}(U \mid D = \{WP = \text{isc}, WW = \text{short} \} =$$

 $P(w_4|D) \neq U(w_4) + P(w_5|D) \neq U(w_5)$

msx

short

 An optimal decision is the decision D = d_{max} whose expected utility is maximal:
 Wear Pads Which way EU

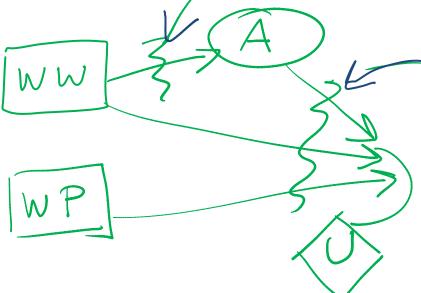

$$d_{\max} = \underset{d_i \in dom(D)}{\operatorname{arg\,max}} \mathbb{E}(U \mid D = d_i) \xrightarrow{}_{i \in dom(D)} \operatorname{true} \qquad \underset{false}{\operatorname{false}} \qquad \underset{long}{\operatorname{false}} \qquad \underset{false}{\operatorname{false}} \{false} \\underset{false}{\operatorname{false}} \\underset{false}{\operatorname{fa$$

Expected utility of a decision

• The expected utility of decision $D = d_i$ is

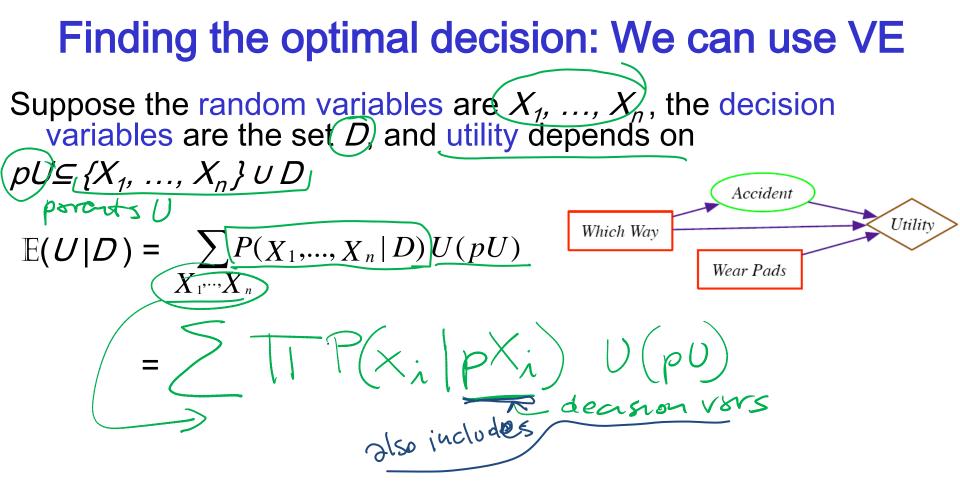
$$\mathbb{E}(U \mid D = d_i) = \sum_{w \models (D = d_i)} P(w) U(w)$$

 What is the expected utility of Wearpads=yes, Way=short ?


Lecture Overview

- Intro
- One-Off Decision Problems
- Utilities / Preferences and Optimal Decison
- Single stage Decision Networks

Single-stage decision networks


Extend belief networks with:

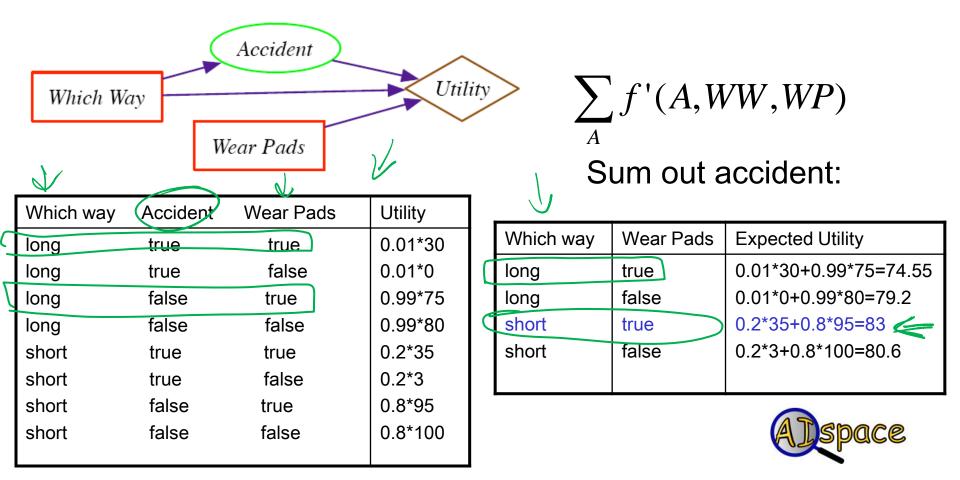
- **Decision nodes**, that the agent chooses the value for. Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.
- Shows explicitly which decision nodes
 affect random variables

Whi	ch way	Utility		
long	1	true	true	30
long	I	true	false	0
long	I	false	true	75
long	I	false	false	80
sho	rt	true	true	35
sho	rt	true	false	3
sho	rt	false	true	95
sho	rt	false	false	100

Which	Accident	
way		
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

To find the optimal decision we can use VE:

- 1. Create a factor for each conditional probability and for the utility
- 2. Multiply factors and sum out all of the random variables (This creates a factor on \mathcal{D} that gives the expected utility for each d_{λ})
- 3. Choose the d_{i} with the maximum value in the factor.


Example Initial Factors (Step1)

fr Which Way		rident Pads	f_2 Utility f_2			
			Whic	n way Accident	Wear Pads	Utility
+1/			long	true	true	30
			long	true	false	0
Which way	Accident	Probability	long	false	true	75
long	true	0.01	long	false	false	80
long	false	0.99	short	true	true	35
short	true	0.2	short	true	false	3
SHOL						1
short	false	0.8	short	false	true	95

Example: Multiply Factors (Step 2a)

	Acc	rident		+				
Which Way	Wear F	Pads	Utility	$\sum_{A} f_1(W$	W,A	$\times f_2(A, V)$	WW,WP)	
Which way	Accident	Probability	<i>f</i> 1	-	+3			
long long	true false	0.01 0.99		Which way	Accident	Wear Pads	Utility	
short	true	0.2	1					
short	false	0.8	t2 →	long	true	true	30 *	
Which way	Accident	Wear Pads	Utility	long	true	false	0 * .01	
long	true	true	30	long	false	true	75 ∽ • ♥ ٩	
long	true	false	0	long	false	false	80	
long	false	true	75	short	true	true	35	
long long	false false	true false	75 80				35 3	
long short	false true	false true	80 35	short	true	false	3	
long short short	false true true	false true false	80 35 3	short short	true false	false true	3 95	
long short	false true	false true	80 35	short	true	false	3	

Example: Sum out vars and choose max (Steps 2b-3)

Thus the optimal policy is to take the **short way** and **wear pads**, with an *expected utility* of 83.

Learning Goals for today's class

You can:

- Compare and contrast stochastic single-stage (one-off) decisions vs. multistage decisions
- Define a <u>Utility Function</u> on possible worlds
- Define and compute optimal one-off decision (max expected utility)
- Represent one-off decisions as single stage decision networks and compute optimal decisions by Variable Elimination

Next Class (textbook sec. 9.3)

Set of primitive decisions that can be treated as a single macro decision to be made *before acting*

- Agents makes observations
- Decides on an action
- Carries out the action

Homework #4, due date: Fri Nov 30, 1PM.

You can drop it at my office (ICICS 105)or by handin. For Q5 you need material from the last lecture, so work on the rest before then.

Work on Practice Exercise 9.A

Please Complete Teaching Evaluations

Teaching Evaluation Surveys will close on Tuesday, December 4th