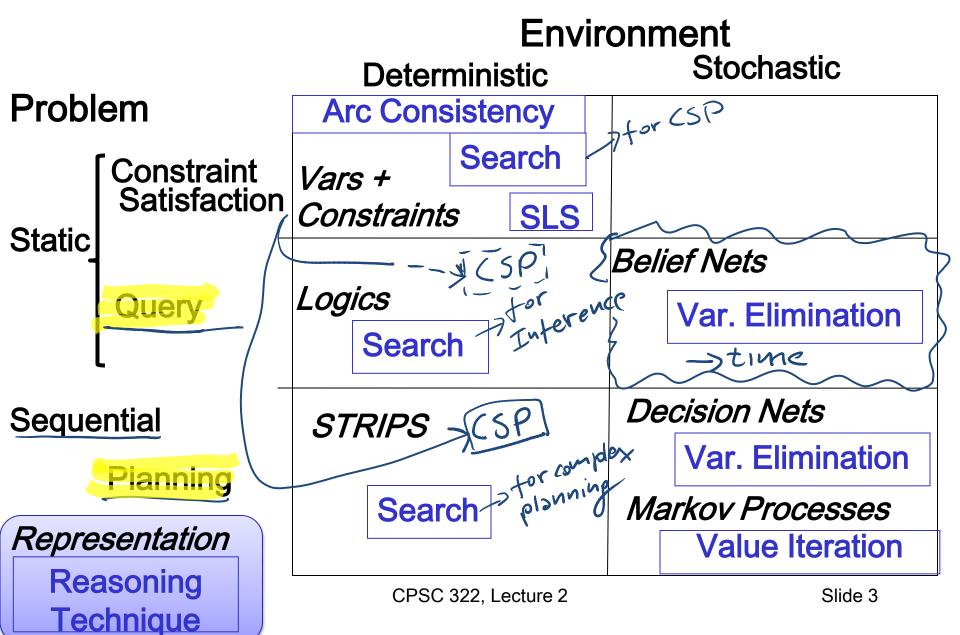
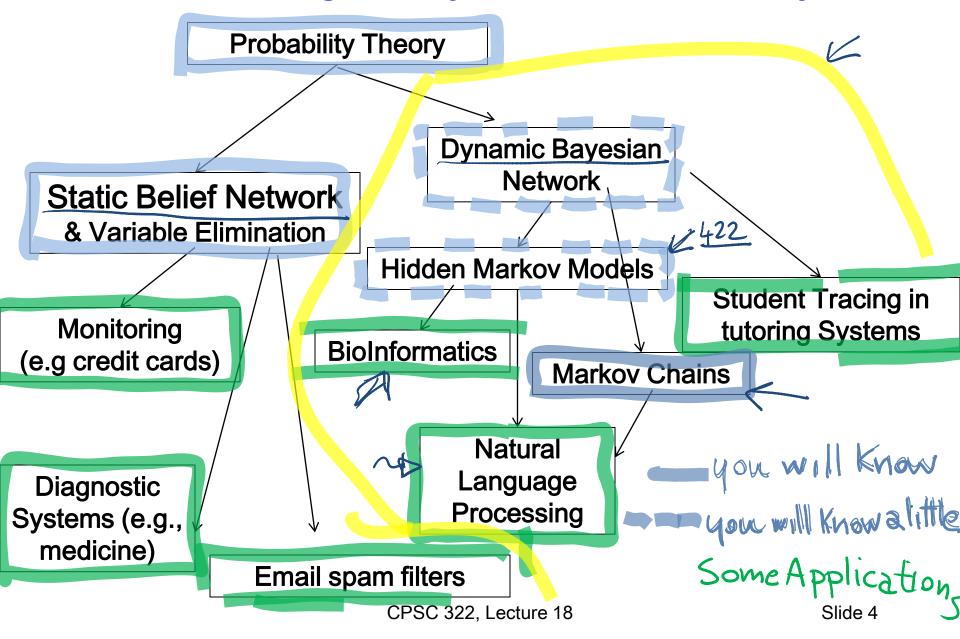
Probability and Time: Markov Models

Computer Science cpsc322, Lecture 31

(Textbook Chpt 6.5.1)


Nov, 21, 2012


Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Big Picture: R&R systems

Answering Query under Uncertainty

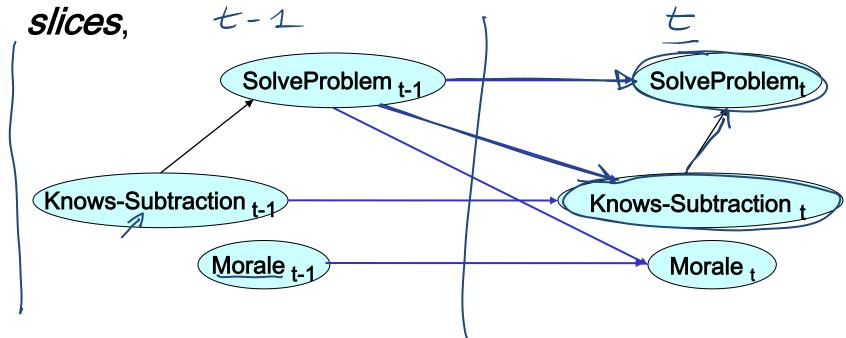
Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Modelling static Environments

So far we have used Bnets to perform inference in static environments

• For instance, the system keeps collecting evidence to diagnose the cause of a fault in a system (e.g., a car).

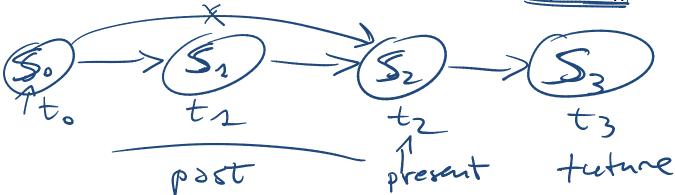

 The environment (values of the evidence, the true cause) does not change as I gather new evidence

What does change?

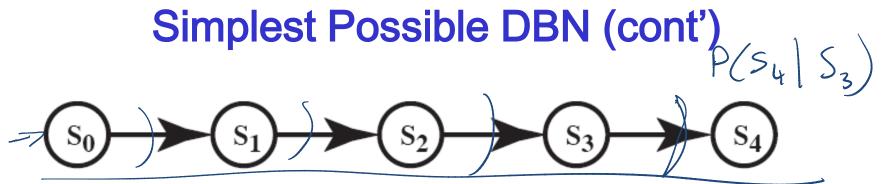
The system's beliefs over possible causes

Modeling Evolving Environments

- Often we need to make inferences about evolving environments.
- Represent the state of the world at each specific point in time via a series of snapshots, or *time*


Tutoring system tracing student knowledge and morale

Lecture Overview


- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Simplest Possible DBN

• One random variable for each time slice: let's assume S_t represents the state at time t with domain $\{s_1 ... s_n\}$

- Each random variable depends only on the previous one
- Thus $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$
- Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

How many CPTs do we need to specify?

- Stationary process assumption: the mechanism that regulates how state variables change overtime is stationary, that is it can be described by a single transition model
- · P(St|St-1) is the same for all t

Stationary Markov Chain (SMC)

A stationary Markov Chain: for all t >0

- $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$ and Markov assumption

We only need to specify $P(S_t)$ and $P(S_{t+1}|S_t)$

- Simple Model, easy to specify
- Often the natural model <
- The network can extend indefinitely
- Variations of SMC are at the core of most Natural sed in the Language Processing (NLP) applications! also used by Good lets Page Rank also (used by web pages)

Stationary Markov-Chain: Example

Domain of variable S_i is {t, q, p, a, h, e}

values

We only need to specify...

$$P(S_0)$$

Probability of initial state

t	.6
q	.4
р	0
а	Q
h	P
е	0

d

Slide 12

Stochastic Transition Matrix

(C		l C'	\
	t+1	$ S_t $)

(St)-	St+1)
6 values	6 values

		t	σ	р	a	h	Φ		
$S_t \rightarrow S_t$	t	0	ფ.	0	.3	.4	0		
	q	.4	0	.6	0	0	0	-P(S	t+1
	p	0	0	1	0	0	0	< P(S+.+1
	а	0	0	.4	.6	0	0		-
	h	0	0	0	0	0		•	-
	e	1	0	0	0	0	0	-	-

CPSC 322, Lecture 30

Markov-Chain: Inference

Probability of a sequence of states $S_0 \dots S_T$

$$P(S_{0},...,S_{T}) = P(S_{0}) P(S_{1}|S_{0}) P(S_{2}|S_{1})$$

$$P(S_{t+1}|S_{0}) P(S_{t+1}|S_{0}) P(S_{0}) P(S_{0}|S_{0}) P(S_{0}|S_{0}) P(S_{0}|S_{0}) P(S_{0}|S_{0}|S_{0}) P(S_{0}|S_{0$$

CPSC 322, Lecture 30

Slide 13

Lecture Overview

- Recap
- Temporal Probabilistic Models
- Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Key problems in NLP

Noun verb

 $P(w_1,...,w_n)$?

"Book me a room near UBC" $P(w_1,...,w_n)$ Assign a probability to a sentence (a sequence of words)

- -> Part-of-speech tagging -> Symmarization, Machine
- → Word-sense disambiguation, → Translation......
 - Probabilistic Parsing

- Predict the next word $P(w_n | w_1 w_{n-1}) =$ Speech recognition
 Hand-writing recognition $= P(w_1 ... w_n) / P(w_1 ... w_{n-1})$

- Augmentative communication for the disabled

 $P(w_1,...,w_n)$?

Impossible to CPSC503 Winter 2008 estimate (8)

 $P(w_1,...,w_n)$?

Impossible to estimate!

Assuming 10⁵ words and average sentence contains 10 words $(10^5)^{\circ} = 10^{5^{\circ}}$

Google language repository (22 Sept. 2006)

-would contain probabilities

contained "only": 95,119,665,584 sentences

Most sentences will not appear or appear only once 🕾

What can we do?

Make a strong simplifying assumption!

Sentences are generated by a Markov Chain

we state beginning of a sentence

$$P(w_1,...,w_n) = P(w_1|~~) \prod_{k=2}^n P(w_k|w_{k-1})~~$$

$$= P(w_1|~~) P(w_2|w_2) P(w_3|w_2) ... P(w_k|w_{k-1})~~$$
P(The big red dog barks)=

These probs can be assessed in practice!

Estimates for Bigrams P(w) | w)

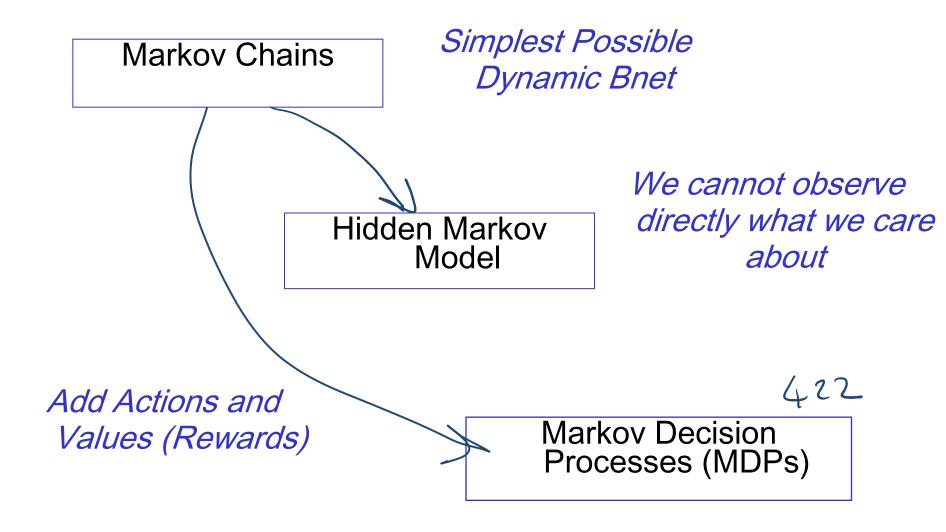
Count How many

Silly language repositories with only two sentences:

"<S>The big red dog barks against the big pink dog"

"<S>The big pink dog is much smaller"

$$P(red \mid big) = \frac{P(big, red)}{P(big)} = \frac{C(big, red)}{V_{pairs}} = \frac{C(big, red)}{C(big)} = \frac{C(big, red)}{C(big)} = \frac{C(big)}{C(big)} = \frac{C(bi$$


Learning Goals for today's class

You can:

• Specify a Markov Chain and compute the probability of a sequence of states

• Justify and apply Markov Chains to compute the probability of a Natural Language sentence (NOT to compute the conditional) probabilities - slide 18

Markov Models

Next Class

- Finish Probability and Time: Hidden Markov Models (HMM) (TextBook 6.5.2)
- Start Decision networks (TextBook chpt 9)
 Course Elements
- Assignment 4 is available on Connect this afternoon. Due on Nov the 28th (last class).

TA evaluations