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Lecture Overview

* Recap
* Temporal Probabilistic Models

o Start Markov Models
* Markov Chain

* Markov Chains in Natural Language
Processing
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Big Picture: R&R systems
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Lecture Overview
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Modelling static Environments

So far we have used Bnets to perform inference in static
environments

* For instance, the system keeps collecting evidence to
diagnose the cause of a fault in a system (e.g., a car).

kp@@@

* The environment (values of the evidence, the true
cause) does not change as | gather new evidence

« What does change? The system’s beliefs over
possible causes



Modeling Evolving Environments

« Often we need to make inferences about evolving
environments.

« Represent the state of the world at each specific
point in time via a series of snapshots, or fime
slices, -1 ) C
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» Temporal Probabilistic Models
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Simplest Possible DBN

« One random variable for each time slice: let's assume S,
represents the state at time £ with domain {s, ...s,}

GG

J— A
P >¢<U T Plreyév&' —-,l—u,{"«t‘{
« Each random variable depends only on the previous one

s TSy | S. - <) = FC&;@ ?__c,w>

* Intuitively S, conveys all of the information about the
history that can affect the future states.

:;7“The future is independent of the past given the present.”
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Simplest Possible DBN (cont’%{ s )
Su| S,

R OraOria OraOmal

 How many CPTs do we need to specify?

G4 P(s.ls)) P(s.lsy) etc,

» Slationary process assumption. the mechanism
that regulates how state variables change
overtime is stationary, that is it can be described
by a single transition model

° P(Stlst_1) Y He ssane ‘]»ayr }M t




Stationary Markov Chain (SMC)

A stationary Markov Chain : for all t >0
o P(S,”l Sg,-.-,S,) = P(St+7|Sz:) and M'XVKQ\/ éﬁsum*ohov\
* P(S;+1S)is the same stuéowsv

We only need to specify {5 ) and P(Stes | §t>

Simple Model, easy to specify <
Often the natural model <
The network can extend indefinitelyzf/

Variations of SMC are at the core of most Natural &O\ e +o
Language Processing (NLP) applications! 6\30 - es)
G e‘o P2 §
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Stationary Markov-Chain: Example

_ _ _ SIX possible
Domain of variable S;is {t, g, p, a, h, €} valoes

We only need to specify...
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Probability of initial state
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Markov-Chain: Inference
Probability of a sequence of states S, ... S

P(So,...5r) = P(5.) F(54]5.) [52 Sl

5)—>(51)—> Q{;\) \\ P (St S)

P(S)) /(t)\é@
<ﬂ3ﬂeé>%t - 20

L
v

N

Example:

P(t,d, p) =

P(t) « f(}{t) X e a)
6

b X . 3 X 104
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Lecture Overview

 Markov Models

* Markov Chain

* Markov Chains in Natural Language
Processing
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Key problems in NLP p

Nov™ yech U
‘Book me a room near UBC‘” |:>(W1 Wn) 9.

Assign a probability to a sentence(a sequemce of words )

—>¢ Part-of-speech tagging —, /ymmar/zaz‘/on Machine
— ¢ Word-sense disambiguation, >Trans/az‘/on

* Probabilistic Parsing _—
Predict the next word & © _
— I(WV\\W/L"“WW-D*’

*>8peech recognition
_*7Hand-writing recognition F(w- ") / Plvs - )
P Augmentative communication for the disabled

P(wWa,.., Wn)? Impossible to
L21/2015 srsesmwiner200s €StiMate ® s




P(w,.., Wn) ? Impossible to estimate!

Assuming 10° words and average sentence
contains 10 words ....... ( >

would cgvd'a—w\ Pho‘aé‘o Jwhes
750 [leted from Hre wlele

Google language repository (22 Sept. 2006)"*

contained “only”: 95,119,665,584 sentences

" z@“

Most sentences will not appear or appear only once ®
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What can we do?

Make a strong simplifying assumption!

Sentences are generated by a Markov Chain
wy st Hae loggrianing of > senmttm @

P, W) = P(Wr< > >) [T, P | wi—s)
= P(W1[<S>> P(Wé-,w1> P(W3/""z> "P(WK(Wz \
P(The big red dog barks)= -

§P('Ij1§|<8>)* PClig | the)x T(red) ""55%”‘

Q?<«A OX )r€d> X~ F<'owKS 1 0103/5
The se Pm\os com oo Bssessed 1u prachice |
&
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Estimates for Bigrams_ 7(«, |« )

Silly language repositories with only two sentences:

[ =

‘<S> The(big)red,dog barks against the(Bly pink dog”
“<S> The big pink dog is much smaller’

Coumt Howy A

‘hvmf/s = Youwx
AOW@"\J‘E on btav<

— 0
d > P(big, red) L blq redb)/ Yop red nd iy
P(red |big) = (big.red) _

N © Co(big,red) |

Clbig) T2
P(b ) (Olis)/ C(blg) 3
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0 7&\0 Som € hﬂodqjs vse fuwo
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Learning Goals for today’s class

You can: VY

» Specify a Markov Chain%nd compute the &
probability of a sequence of states

 Justify and apply Markov Chains to compute
the probability of a Natural Language

O~
sentence @ci;b Compride Hie condrdional

Y‘o‘oé'aL]/\'J’iCS - s\de Ig
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Markov Models

Markov Chains

Simplest Possible
Dynamic Bnet

\ We cannot observe

Hidden Markov directly what we care
Model about

Add Actions and
Values (Rewards)

(1L

. Markov Decision
~ Processes (MDPs)
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Next Class

* Finish Probability and Time: Hidden Markov
Models (HMM) (7TextBook 6.5.2)

« Start Decision networks (7extBook chpt 9)

Course Elements

« Assignment 4 is available on Connect this
afternoon . Due on Nov the 28th (last class).

TA evaluations
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