Reasoning Under Uncertainty: Bnet Inference

(Variable elimination)

Computer Science cpsc322, Lecture 29

(Textbook Chpt 6.4)

Nov, 16, 2012

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Intro

Learning Goals for Wed's class

You can:

• In a Belief Net, determine whether one variable is independent of another variable, given a set of observations.

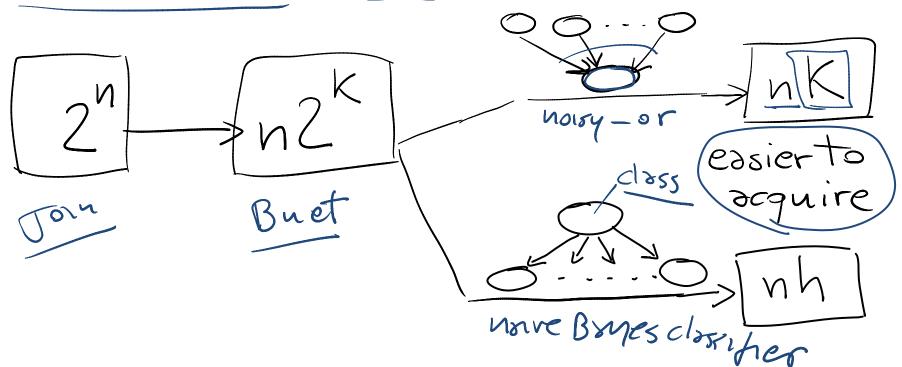
• Define and use **Noisy-OR** distributions. Explain assumptions and benefit.

Implement and use a naïve Bayesian classifier. Explain assumptions and benefit.

3 Configuration blocking dependency (belief propagation) EVIDENCE/OBSERVED ✓ CPSC 322, Lecture 28 Slide 4

Bnets: Compact Representations

n Boolean variables, k max. number of parents



Only one parent with h possible values

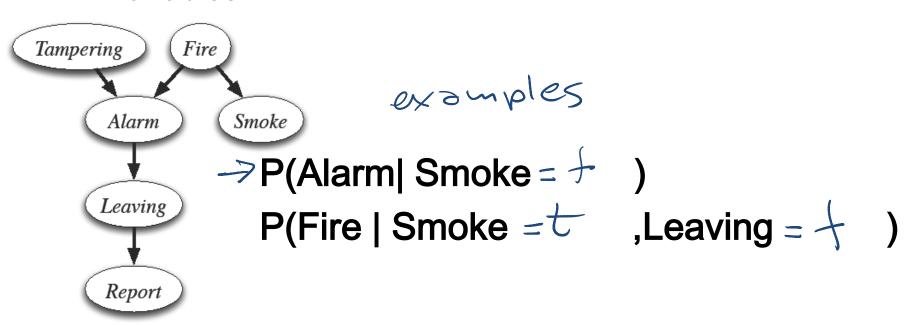
Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Bnet Inference

 Our goal: compute probabilities of variables in a belief network

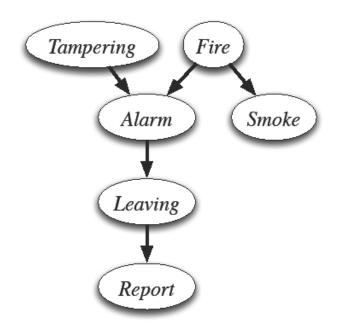
What is the posterior distribution over one or more variables, conditioned on one or more observed variables?



Bnet Inference: General

- Suppose the variables of the belief network are X_1, \dots, X_n .
- Z is the query variable
- $Y_1 = v_1, ..., Y_i = v_i$ are the observed variables (with their values)
- $Z_1, ..., Z_k$ are the remaining variables

• What we want to compute:
$$P(Z | Y_1 = v_1, ..., Y_j = v_j)$$



Example:

$$P(L \mid S = t, R = f)$$

CPSC 322, Lecture 29

Slide 8

What do we need to compute?

Remember conditioning and marginalization...

P(L|S=t,R=f)=
$$P(L,S=t,R=+) \leftarrow 0$$

 $P(S=t,R=+) = 0$

L	S	R	P(L, S=t, R=f)
t	t	f	, 3
f	t	f	. 2

Do they have to sum up to one?

2 =	_	•	5
-----	---	---	---

	L	S	R	P(L S=t, R=f)
7	t	t	f	,6
	f	t	f	.4

In general.....

$$P(Z | Y_1 = v_1, ..., Y_j = v_j) = P(Z, Y_1 = v_1, ..., Y_j = v_j) = P(Z, Y_1 = v_1, ..., Y_j = v_j) = P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$P(Z | Y_1 = v_1, ..., Y_j = v_j) = P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

- We only need to **compute the** homers and then **normalize**
- This can be framed in terms of **operations** between factors (that satisfy the semantics of probability)

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Factors

- A factor is a representation of a function from a tuple of random variables into a number. (2)
- We will write factor f on variables X_1, \ldots, X_j as
- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$ Distribution
 - e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor Partial distribution t
 - e.g., $P(Z \mid X, Y)$ is a factor f(Z, X, Y)
 - e.g., $P(X_1, X_3 = v_3)/X_2$) is a factor Set of partial Distributions

CPSC 322. Lectu

P(2)	$(\times \times)$
------	-------------------

(0.1
\	t	t	f	0.9
	t	f	It	0.2
	t	f	f	0.8
	f	t	7 t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

Factors

- A factor is a representation of a function from a tuple of random variables into a number. ()
- We will write factor f on variables X_1, \ldots, X_j as
- A factor denotes one or more (possibly partial) distributions over the given tuple of variables

P(Z|X,Y)

•	e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$	X ₂)	Distribution
---	---	------------------	--------------

- e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor Partial distribution $f(X_1, X_2) = v_3$
- e.g., $P(X \mid Z, Y)$ is a factor f(X,Z,Y)

•	e.g., $P(X_1, X_3 = V_3)/X_2)$	is a factor Set of partial
	$f(X_1, X_2)_{X3 = v3}$	Distributions

CPSC 322, Lecti

2	X	Y	Z	val
$n \overline{n}$	t	t	t	0.1
\	t	t	f	0.9
_	t	f	T	0.2
	t	f	f	0.8
	f		\sqrt{t}	0.4
	f	t	f	0.6
		_		

f f t 0.3 f f f 0.7

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as
- A factor denotes one or more (possibly partial) distributions over the given tuple of variables

P(Z|X,Y)

- e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$ Distribution
- e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor Partial distribution $f(X_1, X_2) = v_3$
- e.g., $P(X \mid Z, Y)$ is a factor f(X, Z, Y)
- e.g., $P(X_1, X_3 = v_3)/X_2$) is a factor Set of partial Distributions

CPSC 322, Lecti

	, ,	•	_	,
1	t	t	t	0.1
\	t	t	f	0.9
_	<u>t</u>	f	T	0.2
	t	f	f	0.8
	f		7 t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

Manipulating Factors:

We can make new factors out of an existing factor

 Our first operation: we can <u>assign</u> some or all of the variables of a factor.

	X	Y	Z	val	
	t	t	t	0.1	What is the result of
	t	t	f	0.9	assigning X= t ?
	t	f	t	0.2	decigning // t .
f(X,Y,Z):	t	f	f	0.8	f(X=t,Y,Z)
	f	t	t	0.4	1()(1,1,2)
	f	t	f	0.6	f(V V 7)
	f	f	t	0.3	$f(X, Y, Z)_{X = t}$
	<u>f</u>	-f-	f	0.7	

More examples of assignment

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

Y	Z	val
4-	t	0.1
t	f	0.9
·f—	t	0.2
f	f	8.0
	t t f	Y Z t t t f f f

$$r(X=t,Y,Z=f): \begin{array}{c|c} Y & val \\ \hline t & • 8 \\ \hline f & • 8 \\ \hline \end{array}$$

$$r(X=t,Y=f,Z=f):$$
 val

Summing out a variable example

Our second operation: we can **sum out** a variable, say X_1 with domain $\{v_1, ..., v_k\}$, from factor $f(X_1, ..., X_j)$, resulting in a factor on $X_2, ..., X_i$ defined by:

,	,					
_		val	С	Α	B	(
A C val		0.03	t	t	→ t	
77 0 741		0.07	F	t	t	
(† †) .5 +		0.54	t	Lt_	→ f	
$\Sigma_{\rm B} f_3(A,C)$: t f	$\Sigma_{B}f_{3}(A,C)$:	0.36	f	t	f	
f t		0.06	t	f	t	f ₃ (A,B,C):
f f		0.14	f	f	t	
		0.48	t	f	f	
		0.32	f	f	f	
ft	$\Sigma_{B}f_{3}(A,C)$:	0.54 0.36 0.06 0.14 0.48	f t	f	f f t t f	

$$\left(\sum_{X_1} f\right) (X_2, \dots, X_j) = f(X_1 = v_1, X_2, \dots, X_j) + \dots + f(X_1 = v_k, X_2, \dots, X_j)$$

Multiplying factors

•Our third operation: factors can be *multiplied* together.

Α	В	Val
• t	t	0.1
O t	f	0.9
f	t	0.2
f	f	8.0
l	'	
В	С	Val
t	t	0.3
≯ t	f	0.7
7 f	t	0.6
f	f	0.4
	t t t f f t	t t t f f t f f t f f t f t

	Α	В	С	val
©	t	t	(-03
*	t	(t	f	,07
0	<u>t</u>	f	t	. 054
$f_1(A,B) \times f_2(B,C)$:	t	f	f	
	f	t	t	
	f	t	f	
	f	f	t	
	f	f	f	

Multiplying factors: Formal

•The **product** of factor $f_1(A, B)$ and $f_2(B, C)$, where B is the variable in common, is the factor $(f_1 \times f_2)(A, B, C)$ defined by:

Note1: it's defined on all A, B, C triples, obtained by multiplying together the appropriate pair of entries from f_1 and f_2 .

Note2: A, B, C can be sets of variables

Factors Summary

- A factor is a representation of a function from a tuple of random variables into a number.
 - $f(X_1,\ldots,X_i)$.
- We have defined three operations on factors:
 - 1. Assigning one or more variables
 - $f(X_1=v_1, X_2, ..., X_j)$ is a factor on $X_2, ..., X_j$, also written as $f(X_1, ..., X_j)_{X_1=v_1}$
 - 2.Summing out variables

•
$$(\sum_{X_1} f)(X_2, ..., X_j) = f(X_1 = v_1, X_2, ..., X_j) + ... + f(X_1 = v_k, X_2, ..., X_j)$$

3. Multiplying factors

•
$$f_1(A, B) f_2(B, C) = (f_1 \times f_2)(A, B, C)$$

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Intro Variable elimination Algo

Variable Elimination Intro

- Suppose the variables of the belief network are X_1, \dots, X_n .
- Z) is the query variable
- $Y_1=v_1, ..., Y_j=v_j$ are the observed variables (with their values)
- Z₁, ...,Z_k are the remaining variables
- What we want to compute: $P(Z | Y_1 = v_1, ..., Y_j = v_j)$
- We showed before that what we actually need to compute is

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

This can be computed in terms of **operations between factors** (that satisfy the semantics of probability)

Variable Elimination Intro

If we express the joint as a factor,

- We can compute $P(Z, Y_1 = v_1, ..., Y_j = v_j)$ by ??
 - •assigning $Y_1 = V_1, ..., Y_j = V_j$
 - •and summing out the variables $Z_1, ..., Z_k$

$$P(Z, Y_1 = v_1, ..., Y_j = v_j) = \sum_{Z_k} ... \sum_{Z_1} f(Z, Y_1, ..., Y_j, Z_1, ..., Z_k)_{Y_1 = v_1, ..., Y_j = v_j}$$

$$+ \sum_{Z_1} f(Z, Y_1, ..., Y_j, Z_1, ..., Z_k)_{Y_1 = v_1, ..., Y_j = v_j}$$

Are we done?

Learning Goals for today's class

You can:

 Define factors. Derive new factors from existing factors. Apply operations to factors, including assigning, summing out and multiplying factors.

• (*Minimally*) Carry out **variable elimination** by using factor representation and using the factor operations. Use techniques to simplify variable elimination.

Next Class

Variable Elimination

- The algorithm
- An example

Course Elements

- Assignment 3 is due on Monday!
- Assignment 4 will be available on Wednesday and due on Nov the 28th (last class).