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Key points Recap 

• We model the environment as a set of …. 
 

• Why the joint is not an adequate representation ?  
 
“Representation, reasoning and learning” are 

“exponential” in ….. 
 

Solution: Exploit marginal&conditional independence  

 
 
 
But how does independence allow us to simplify the 

joint? 
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Lecture Overview 

• Belief Networks 

• Build sample BN 

• Intro Inference, Compactness, Semantics 

• More Examples 
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Belief Nets: Burglary Example 
There might be a burglar in my house 

 

The anti-burglar alarm in my house may go off 

 

I have an agreement with two of my neighbors,  John and 
Mary, that they call me if they hear the alarm go off when I 
am at work 

 

Minor earthquakes may occur and sometimes the set off the 
alarm.  

 

 

Variables: 
 

Joint has                 entries/probs 
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Belief Nets: Simplify the joint 
• Typically order vars to reflect causal knowledge 

(i.e., causes before effects) 
• A burglar (B) can set the alarm (A) off 

• An earthquake (E) can set the alarm (A) off 

• The alarm can cause Mary to call (M) 

• The alarm can cause John to call (J) 

 

 

• Apply Chain Rule 

 

 

• Simplify according to marginal&conditional 
independence 
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Belief Nets: Structure + Probs 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 

• Directed Acyclic Graph (DAG)  
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Burglary: complete BN 

B E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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Lecture Overview 

• Belief Networks 

• Build sample BN 

• Intro Inference, Compactness, Semantics 

• More Examples 
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Burglary  Example: Bnets inference 

(Ex1) I'm at work,  

• neighbor John calls to say my alarm is ringing,  

• neighbor Mary doesn't call.  

• No news of any earthquakes.  

• Is there a burglar? 

(Ex2) I'm at work,  

• Receive message that neighbor John called ,  

• News of minor earthquakes.  

• Is there a burglar? 

 
 

 

 

Our BN can answer any probabilistic query that can 
be answered by processing the joint! 

 
 

 

 

Set digital places to monitor to 5 
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Bayesian Networks – Inference Types 

Diagnostic 
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JohnCalls 
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P(J) = 0.011 

0.66 
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Mixed 

Earthquake 
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P(M) = 1.0 

P(E) = 1.0 

P(A) = 0.003 

 0.033 
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BNnets: Compactness 

B 
E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) 
P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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BNets: Compactness 

In General: 
A CPT for boolean Xi with k boolean parents has          rows for 

the combinations of parent values 

Each row requires one number pi  for Xi = true 
(the number for  Xi = false is just 1-pi ) 

 

If each variable has no more than k parents, the complete 
network requires   O(                      ) numbers 

 

For k<< n, this is a substantial improvement,  

• the numbers required  grow linearly with n, vs. O(2n) for 
the full joint distribution 
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BNets: Construction General Semantics 

The full joint distribution can be defined as the product of 
conditional distributions: 

 P (X1, … ,Xn) = πi = 1  P(Xi | X1, … ,Xi-1)  (chain rule)   

 

Simplify according to marginal&conditional independence 
 

 
 

                                     

n 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 
 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

n 



CPSC 322, Lecture 26 Slide 16 

BNets: Construction General Semantics 

(cont’) 
n 

 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

 
 

• Every node is independent from its non-descendants 
given it parents 
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Lecture Overview 

• Belief Networks 

• Build sample BN 

• Intro Inference, Compactness, Semantics 

• More Examples 

 



CPSC 322, Lecture 26 Slide 18 

Other Examples: Fire Diagnosis 

(textbook Ex. 6.10) 
Suppose you want to diagnose 

whether there is a fire in a 

building 

• you receive a noisy report 
about whether everyone is 
leaving the building. 

• if everyone is  leaving, this may 
have been caused by a fire 
alarm. 

• if there is a fire alarm, it may 
have been caused by a fire or 
by tampering 

• if there is a fire, there may be 
smoke raising from the bldg. 
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Other Examples (cont’) 

• Make sure you explore and understand the 

Fire Diagnosis example (we’ll expand on it to 

study Decision Networks) 

 

• Electrical Circuit example (textbook ex 6.11) 

 

• Patient’s wheezing and coughing example 

(ex. 6.14) 

 

• Several other examples on  
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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Learning Goals for today’s class 

You can: 

Build a Belief Network for a simple domain 

 

Classify the types of inference 

 

 

Compute the representational saving in terms 

on number of probabilities required 
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Next Class (Wednesday!) 

Bayesian Networks Representation 

• Additional Dependencies encoded by BNets 

• More compact representations for CPT 

• Very simple but extremely useful Bnet (Bayes 

Classifier) 
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Belief network summary 

• A belief network is a directed acyclic graph (DAG) 
that effectively expresses  independence 
assertions among random variables.  

 

• The parents of a node X  are those variables on 
which X  directly depends. 

 

• Consideration of causal dependencies among 
variables typically help in constructing a Bnet 

 


