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Answering Query under Uncertainty
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Key points Recap

« \We model the environment as a set of 2ndom ver s

Xp - Xy 3D PO - X))
« Why the joint'is not an adequate representation ?

‘&epresentation reasoning and learning” are
“‘exponential”’ in ..&-vors

Solution: Exploit marginal&conditional independence
PUx |y )= POX) UDCK\\?Z?: F(»Qz)

But how does independence allow us to simplify the
joint? 4 RULE |

o
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Lecture Overview

* Belief Networks

* Build sample BN
* Intro Inference, Compactness, Semantics
* More Examples
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Belief Nets: Burglary Example

There might be a burglar in my house
B

The anti-burglar alarm in my house may go off

A

| have an agreement with two of my neighbors, John and
Mary, that they call me if they hear the alarm go off when |
am at work -

F J

Minor earthquakes may occur and sometimes the set off the
alarm. L

Variables: G A4 MJ & w= 5

S "
Jointhas £ — 1 entries/probs -4



Belief Nets: Simplify the joint

* Typically order vars to reflect causal knowledge

(i.e., causes before effects) 3 =
* A burglar (B) can set the alarm (A) off N S
* An earthquake (E) can set the alarm (A) off A
* The alarm can cause Mary to call (M) / \
* The alarm can cause John to call (J) M I
F(B E, A M U‘\ e
A2\ ol éﬁk\ adef

« Apply Chain Rule %

F(&) P(g/[a’j?(A)R@?@)Agﬁ)P@YWAE@

« Simplify according to marginal&conditional
independence




Belief Nets: Structure + Probs
PR +P(E) » PLAIR,E)  P(M | A)+F( |A)

* EXxpress remaining dependencies as a network

* Each varis a node

* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional
probabilities ”Gf/)

£®
g’
IS o™

 Directed Acyclic Graph (DAG) Siide 8




(B

P(B=T)

P(B=F)

.001

999

Tothalls
©{) @]/\)

Burglary complete BN fe)”

SRR

P(E=T) | P(E=F)
.002 998
PCA [,
P(A=T | B,E) | P(A=F | B,E)
.95 .05
94 .06
.29 1
.001 999

P(h A)

A PU=T|A) | PQ=F|A)
90 10
F (.05) 95
SN——"

\JC&\«\ ,\,or ’b"’“’] othen re’sons

P(M=T | A) | P(M=F | A)
70 30
(.o1) 99
N
¢

Slide 9




Lecture Overview

* Belief Networks

* Intro Inference, Compactness, Semantics
* More Examples
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can
be answered by processing the joint!

(Ex1) I'm at work,
= neighbor John calls to say my alarm is ringing,

oy neighbor Mary doesn't call.

_—* No news of any earthquakes. m
* Is there a burglar? |

(Ex2) I'm at work, ey S22 J

* Receive message that neighbor John called ,

®

* News of minor earthquakes. /(9

* Is there a burglar? P@@@ ;EJ\
®

Set digital places to monitor to 5 @
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Bayesian Networks — Inference Types

Diagnostic Predictive Intercausal Mixed

| Burglaryl
(B) = 0.001

016
Alarm |

JohnCalls |

PJ)=1.0 P(J) =0.011
0.66

| Burglary |

P(A) = 0.003
0.033

| JohnCalls |
P(M)=1.0

P(B) = 0.00
0.003

P(E) =1
|Burglary| ()= TT\|>Earthquake|
=1.0 Earthquake
P(—E)=1.0
Alarm

| JohnCalls |
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BNnets: Compactness
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sl BNets: Compactness
USRI
Co oot Q D0 O D

5
¢
A
:g
A\
A

In General: %

for boolean X; with A boolean parents has £ rows for
the combinations of parent values

Each row requires one number p; for X, = true
(the number for X;= falseis just 7-p;)

»f’or‘ exch vode

If each variable has no more p/kparents, the complete
network requires O( 1 ) numbers

For k<< n, this is a substantial immprovement,

* the numbers required fgrow linearly witﬂ vs. O(27)for
the full joint distribution
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of
conditional distributions:

PX,..,X)=1II_, P(X:/X, ..,X.,) (chain rule)
7 / 7

[

Simplify according to marginal&conditional independence

« EXxpress remaining dependencies as a network
* Each varis a node
* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional -
probabilities
v

: Y
P Xy, ... . X,) = IT,_, P (X;[Parents(X))
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BNets: Construction General Semantics
(cont’)

n

PX,..,X)=1II_,P(X:/Parents(X))

* Every node is independent from its non-descendants
given it /a.Fth‘S/OQ_\ 5 <
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Lecture Overview

* Belief Networks

* Build sample BN
* Intro Inference, Compactness, Semantics
* More Examples
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Other Examples: Fire Diagnosis
(textbook Ex. 6.10)

Suppose you want to diagnose
whether there is a fire in a ‘P@’\ WF}

building
* YOU receive a noisy report
about whether everyone is

leaving the building. Pt
 if everyone is leaving, this may |
have been caused by a fire | P(qa)

alarm.
* if there is a fire alarm, it may @

have been caused by a fire or
by tampering \‘/ PR | L)

« if there is a fire, there may be @
smoke raising from the bldg.

sture 26 Slide 18




Other Examples (cont’)

Make sure you explore and understand the p@@@
Fire Diagnosis example (we’ll expand on it to
study Decision Networks)

Electrical Circuit example (textbook ex 6.11) p@@@

/

(&
Patient’s wheezing and coughing example
(ex. 6.14)

p@@@

Several other examples on
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I'jealistic BNet: Liver Diagnosis 57>
/\/éO noaes Source: Onisko et al v\/’/& A Q/b ) E(Z l
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Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999
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Learning Goals for today’s class

You can:
Build a Belief Network for a simple domain

Classifty the types of inference
Dlz%v\ogo"\c | Pr@o\{c&-\‘vﬁ/ ’/rm'\’@rCzqu) | H\Xfél

Compute the representational saving in terms
on number of probabilities required
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Next Class (Wednesday!)

Bayesian Networks Representation
 Additional Dependencies encoded by BNets
* More compact representations for CPT &

* Very simple but extremely useful Bnet (Bayes
Classifier)
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Belief network summary

* A belief network is a directed acyclic graph (DAG)
that effectively expresses independence
assertions among random variables.

* The parents of a node X are those variables on
which X directly depends.

« Consideration of causal dependencies among
variables typically help in constructing a Bnet
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