Marginal Independence and Conditional Independence

Computer Science cpsc322, Lecture 26

(Textbook Chpt 6.1-2)

Nov, 7, 2012

Lecture Overview

- Recap with Example
 - Marginalization
 - Conditional Probability
 - Chain Rule ∠
- Bayes' Rule
- Marginal Independence
- Conditional Independence

our most basic and robust form of knowledge about uncertain environments.

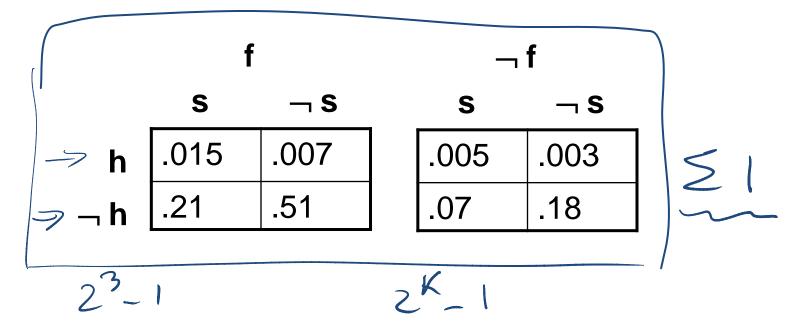
Recap Joint Distribution

- •3 binary random variables: P(H,S,F)
 - H dom(H)={h, ¬h} has heart disease, does not have...
 - S dom(S)={s, ¬s} smokes, does not smoke
 - F dom(F)={f, ¬f} high fat diet, low fat diet

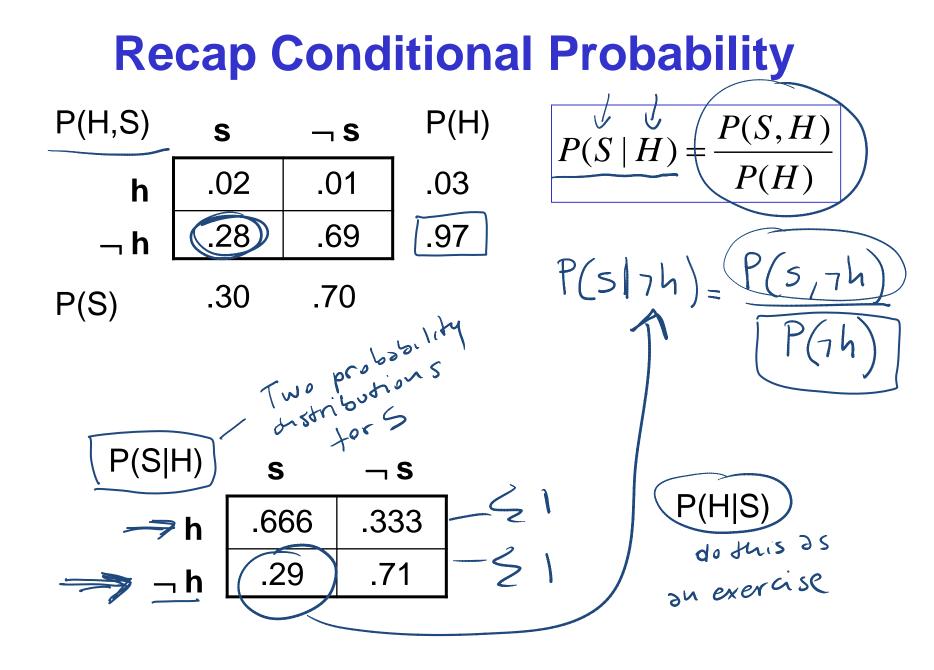
Recap Joint Distribution Joint Prob. Distribution (JPD)

•3 binary random variables: **P(H,S,F)**

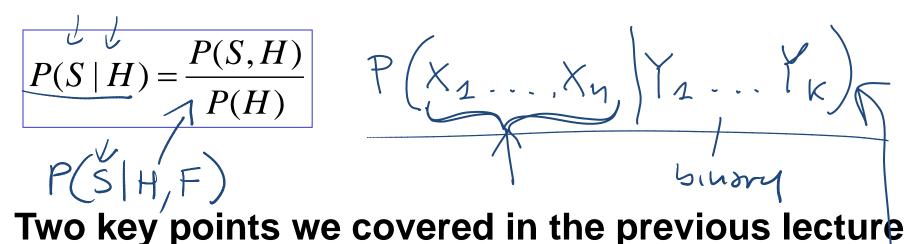
- H dom(H)={h, ¬h} has heart disease, does not have...
- S dom(S)={s, ¬s} smokes, does not smoke
- F dom(F)={f, ¬f} high fat diet, low fat diet



Recap Marginalization P(H,SF)f S **¬ S** S ¬ S .007 015 .003 .005 h .51 .21 .07 .18 --- h $P(H,S) = \sum P(H,S,F=x)$ $x \in dom(F)$ P(H,S)?S 75 .02 .01 .03 P(H)? .69 .28 .7 .3 **P(S)**?



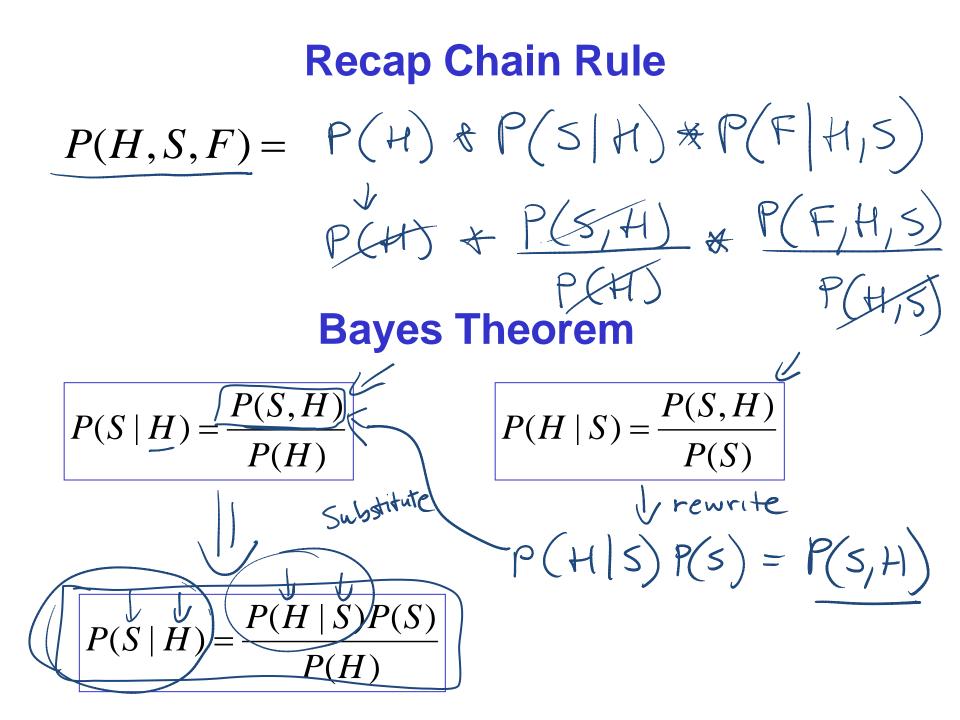
Recap Conditional Probability (cont.)



 We derived this equality from a possible world semantics of probability

• It is not a probability distributions but...set of prob. bistrib.

• One for each configuration of the conditioning var(s) If conditioned set 2^K prob. Bistributions



Lecture Overview

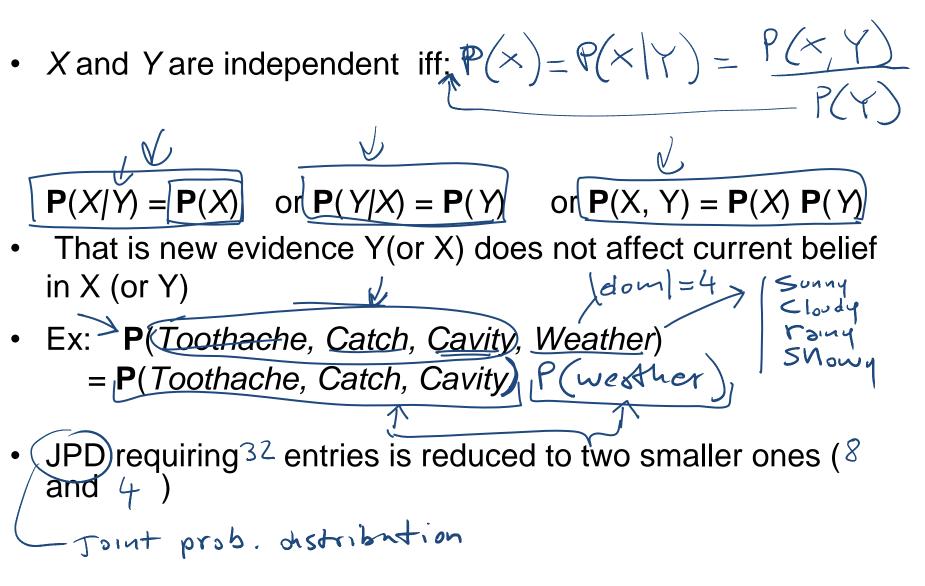
- Recap with Example and Bayes Theorem
- Marginal Independence
- Conditional Independence

Do you always need to revise your beliefs?

 $\overset{\text{NO.}}{\underset{\text{in the value of } \textbf{X}}}$ when your knowledge of Y's value doesn't affect your belief

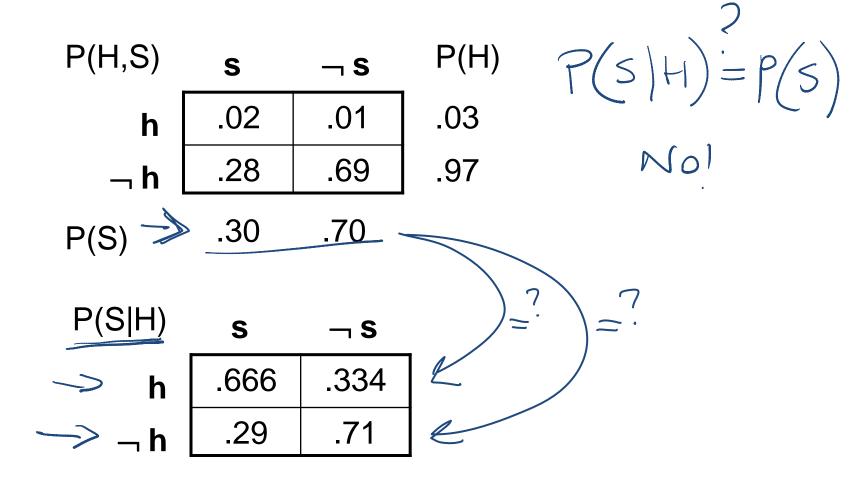
DEF. Random variable **X** is marginal independent of random variable **Y** if, for all $x_i \in dom(X)$, $y_k \in dom(Y)$, P(X=x_i | Y=y_k) = P(X=x_i)

Marginal Independence: Example



In our example are Smoking and Heart Disease marginally Independent ?

What our probabilities are telling us....?



Lecture Overview

- Recap with Example
- Marginal Independence
- Conditional Independence

Conditional Independence

 $P(X_1, \ldots, X_n) = P(X_1) \times \cdots \times P(X_n)$

• With marg. Independence, for <u>n</u> independent random vars, $O(2^n) \rightarrow O(n)$

- Absolute independence is powerful but when you model a particular domain, it is .
- Dentistry is a large field with hundreds of variables, few of which are independent (e.g., *Cavity, Heart-disease*).
- What to do?

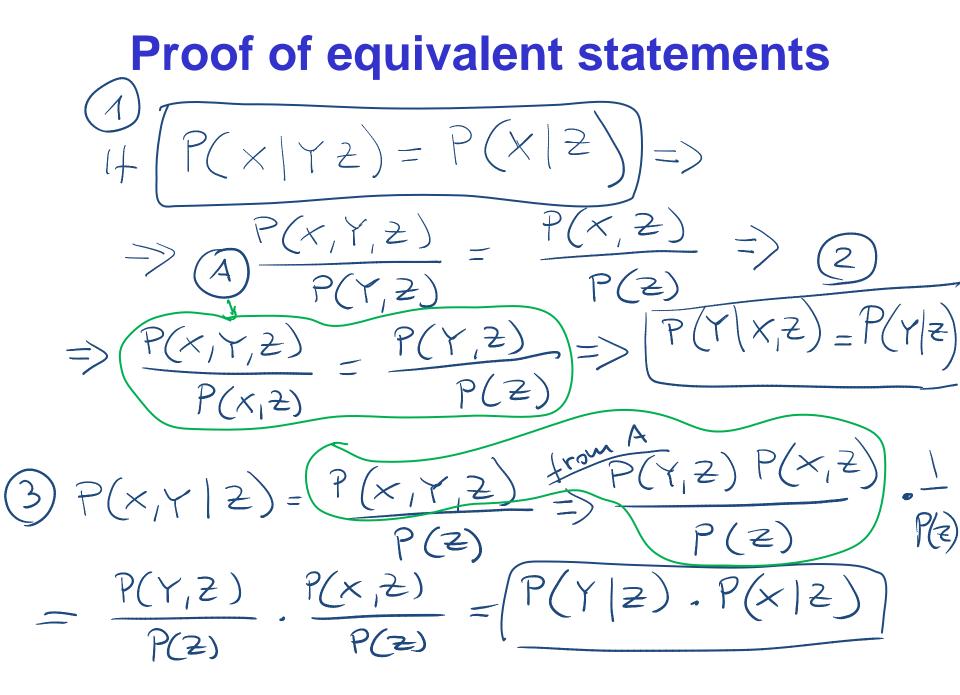
• P(Toothache, Cavity, Catch) (avity) (avi

- BUT If have a cavity, does the probability that the probe catches depend on whether I have a toothache? No (1) P(catch | toothache, cavity) = P(cotch | cavity)
- What if I haven't <u>got a cavity?</u> (2) $P(catch | toothache, \neg cavity) = P(cstch | \neg conty)$
 - Each is <u>directly caused by the cavity</u>, but neither has a direct effect on the other

Conditional independence

- In general, Catch is conditionally independent of Toothache given Cavity.
 - $\mathbf{P}(Catch | Toothache, Cavity) = \mathbf{P}(Catch | Cavity)$
- Equivalent statements:
 P(*Toothache | Catch, Cavity*) = P(*Toothache | Cavity*)
 P(*Toothache, Catch | Cavity*) =
 P(*Toothache, Catch | Cavity*) =
 P(*Toothache | Cavity*) P(*Catch | Cavity*)

P(X,Y) = P(X) P(Y)



Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally independent. However, they *become* independent after we observe some third variable

DEF. Random variable **X** is conditionally independent of random variable **Y** given random variable **Z** if, for all $x_i \in dom(X), y_k \in dom(Y), z_m \in dom(Z)$

$$P(X = x_i | Y = y_k, Z = z_m) = P(X = x_i | Z = z_m)$$

That is, knowledge of **Y**'s value doesn't affect your belief in the value of **X**, given a value of **Z**

Conditional independence: Use

- Write out full joint distribution using chain rule:
 - P(Cavity, Catch, Toothache)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

2

= P(Toothache | Conty) P(Catch | Cavity) P(Cavity)

how many probabilities? $2^3 - 1 = 7$

2

2 + 2 + 1 = 5

- The use of conditional independence often reduces the size of the representation of the joint distribution from exponential in n to linear in n. What is n? # 4 VXS
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Conditional Independence Example 2

Given whether there is/isn't power in wire w0, is whether light 1 is lit or not, independent of the position of switch s2?

$$P(l_{1}|S_{2}, W_{0}) \stackrel{?}{=} P(l_{1}|W_{0}) \qquad W_{1} \qquad S_{1} \stackrel{'}{\longrightarrow}$$

$$\frac{S_{2}}{W_{0}} \qquad W_{2} \qquad W_{2} \qquad W_{2} \qquad W_{3} \qquad W_{4} \qquad W_{5} \qquad W_$$

Conditional Independence Example 3

 Is every other variable in the system independent` of whether light I1 is lit, given whether there is power in wire w0 ?

 $P(s_1 | l_1, w_o) = P(s_1 | w_o)$ $\mathcal{W}_{\mathbf{0}}$

Learning Goals for today's class

- You can:
- Derive the Bayes Rule

- Define and use Marginal Independence
- Define and use Conditional Independence

Where are we? (Summary)

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every possible world
- Queries can be answered by summing over possible worlds
- For nontrivial domains, we must find a way to reduce the joint distribution size
- Independence (rare) and conditional independence (frequent) provide the tools

Next Class

• Bayesian Networks (Chpt 6.3)

Start working on assignments3 !