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| ecture Overview

Recap with Example
— Marginalization

— Conditional Probability
— Chain Rule 2

Bayes' Rule &

Marginal Independence
Conditional Independence @
our most basic and robust form of knowledge
about uncertain environments.



Recap Joint Distribution
=1 H= Blse
*3 binary random vay'éble;:/l%H,S,F)
— H dom(H)={h, —-h} has heart disease, does not have...
— S dom(S)={s, =-s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet



Recap Joint Distribution
J—O\'V\t Pro\o, Nistribofov <S'P:D>

-3 binary random variables: P(H,S,F)

— H dom(H)={h, —=h} has heart disease, does not have...

— S dom(S)={s, -s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet
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Recap Marginalization
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Recap Conditional Probability
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Recap Conditional Probability (cont.)
p(s| )= \n Y
/

Kg oo X
1 P(H) LY
v/ 4
P(SIH,F) o 1beovef

Two key points we covered in the previous lecture

* We derived this equality from a possible world
semantics of probability \

It is not a probability distributions but...S.i”{’ o~ |
/7 Fro'o. &ﬁ'ﬂ\o.

* One for each configuration of the conditioning var(sy
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Recap Chain Rule
P(H,S,F)= P() & P(s[e)* B(F|4)s)
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| ecture Overview

* Recap with Example and Bayes Theorem

* Marginal Independence

« Conditional Independence



Do you always need to revise your beliefs?

NO.. when your knowledge of Y's value doesn’t affect your belief
In the value of X

—_—_—

DEF. Randam variable X is marginal independent of random
variable Y if, for all x; € dom(X), y, € dom(Y),

P(X=X | Y=Yy, =PX=X%)




Marginal Independence: Example

« XandY are independent iff)'\‘P(x>: ?(K \\(3 = Pﬁﬂ_
- PO
L

W V)
/
[PIY) =PO9) ol Y[X) = PY) o PX, ) = P(X) P(Y)

« That is new evidence Y(or X) does not affect current belief

+ Ex—P e, Catch, @ Weather) L
= P(Toothache, Catch, Cavity% [P(weMMB] 1
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In our example are Smoking and Heart Disease
marginally Independent ?

e

What our probabilities are telling us....?
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| ecture Overview

* Recap with Example
* Marginal Independence

« Conditional Independence



Conditional Independence

 With marg. Independence, for n independent
‘random vars, O(2") — O{M

ﬁ?@(iw S (K¢ 5 - S(P(K>

* Absolute independence Is powerful but when you

. Dentlstry Is a large field W|th hundreds of
variables, few of which are independent
(e.g.,Cavity, Heart-disease).

« What to do?



| ook for weaker form of independence/
P(Toothache, Cavity, Catch)

CCatdn D
Are Toothache and/Catch marginally independent
PV | Y D = Phtecke ) TNO

BUT If (have a cavityl, does the probability that the probe
catches depend on whether | have a toothache? NO

(1) P(catch | toothache, cavity) = P(zately | cawt
(ateh | tooghace, cavy

What if | haven't got a cavity?
(2) P(catch | toothache,—cavity) = Plcstcly \ L Cmﬂ\

» Each is directly caused by the cavity, but neither
has a direct effect on the other




Conditional independence

@ P(Catch | Toothache,Cavity) = P(Catch | Cavity) S

« Equivalent statements:
@ P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

@ P(Toothache, Catch | Cavity) =
P(Toothache | Cavity) P(Catch | Cavity)

?(x, N = PCKEZ FC\/@Z




Proof of equivalent statements
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Conditional Independence: Formal Detf.

Sometimes, two variables might not be marginally
Independent. However, they become independent
after we observe some third variable

DEF. Random variable X is conditionally independent of
random variable Y given random variable Z if, for all
X; € dom(X), y, € dom(Y), z,, € dom(Z)
P(X=X | Y=Yy, Z=2,) =P(X=x [ Z=2,,)
That is, knowledge of Y's value doesn’t affect your
belief in the value of X, given a value of Z



Conditional independence: Use

« Write out full joint distribution using chain rule:
(AP(Cavw, 'Lc_),oihac.heD
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cauvity)

—7

:LP(Toothache | <am+u! )\Fli(g%tch | Cavity)5 P(Cavity)

2 N 2. 1.
how many probabilities? 2°-1= v
2 4+2+4 =5

« The use of conditional independence often reduces the size of
the representation of the joint distribution from exponential in n
to linear in n. What is n? % ol vars

« Conditional independence is our most basic and robus%
form of knowledge about uncertain environments.



Conditional Independence Example 2

* Given whether there is/isn’t power in wire w0, is °
whether light |1 is lit or not, independent of the
position of switch s2?

I
P{Z/_,_l S, / WOB‘:P<@1




Conditional Independence Example 3

 |s every other variable in the system independent®
of whether light 11 is lit, given whether there Is
power in wire w0 ?




Learning Goals for today’s class

YOou can:
Derive the Bayes Rule

Define and use Marginal Independence

Define and use Conditional Independence

CPSC 322, Lecture 4 Slide 22



Where are we? (Summary)
Probabillity is a rigorous formalism for uncertain
knowledge

/=
Joint probability distribution specifies probability of
every possible world

Queries can be answered by summing over
possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional ="
Independence (frequent) provide the tools



Next Class

« Bayesian Networks (Chpt 6.3)

Start working on assignments3 !



