Department of Computer Science Undergraduate Events

More details @ https://www.cs.ubc.ca/students/undergrad/life/upcoming-events

Co-op Q & A Drop-in Thurs. Oct 25 12 – 1 pm Reboot Café

Enterprise Architecture Conference Sat. Oct 27 8:30 am – 5 pm Jim Pattison Leadership Centre

TELUS Open House Thurs. Oct 25 12 – 4 pm 4th Floor, 3777 Kingsway

CSSS BBQ Fri. Oct 26 12 – 3 pm Reboot/DMP

Assignment-2 due now

Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs

Computer Science cpsc322, Lecture 20

(Textbook Chpt 5.1.2 - 5.2.2)

Oct, 23, 2010

CPSC 322, Lecture 20

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic:
 Semantics
- PDCL: Bottom-up Proof

Logics as a R&R system

reason about it

if the agent Knows ON-SW1 and live_w3 it should be able to infer Son-ly

Logics in AI: Similar slide to the one for planning

Propositional (Definite Clauses) Logic: Syntax

We start from a restricted form of Prop. Logic:

Only two kinds of statements

- that a proposition is true
- that a proposition is true if one or more other propositions are true

 $(P_1 \vee P_2) \cong (P_3 \vee 7 P_3)$

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

Propositional Definite Clauses Semantics: Interpretation

Semantics allows you to relate the symbols in the logic to the domain you're trying to model. An **atom** can be \dots \top

Definition (interpretation) An interpretation *I* assigns a truth value to each atom.

If your domain can be represented by four atoms (propositions):

9 p 5 r TTFF

PDC Semantics: Body

We can use the **interpretation** to determine the truth value of **clauses** and **knowledge bases**:

Definition (truth values of statements): A body $b_1 \wedge b_2$ is true in *I* if and only if b_1 is true in *I* and b_2 is true in *I*.

	р	q	r	S	PAr	PARAS
I ₁	true	true	true	true	T	
I_2	false	false	false	false	F	+
l ₃	true	true	false	false	F	
I_4	true	true	true	false		Γ .
I_5	true	true	false	true	F	F
	Slide 9					

PDC Semantics: definite clause

Definition (truth values of statements cont'): A rule $h \leftarrow b$ is false in *I* if and only if <u>b</u> is true in *I* and <u>h</u> is false in *I*.

In other words: *"if b is true I am claiming that h must be true, otherwise I am not making any claim"* CPSC 322, Lecture 20 Slide 10

PDC Semantics: Knowledge Base (KB)

• A knowledge base KB is true in I if and only if every clause in KB is true in I.

Which of the three KB above are True in I₁

PDC Semantics: Knowledge Base (KB)

• A knowledge base KB is true in I if and only if every clause in KB is true in I.

Which of the three KB above are True in I₁?KB₃

PDC Semantics: Knowledge Base

Definition (truth values of statements cont'): A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Models

Definition (model) A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Example: Models												
				$\int p \leftarrow q.$								
$KB = \begin{cases} q. \end{cases}$												
	р	q	r	$s r \leftarrow s$.								
\mathcal{A}^{I_1}	true	true	true	true M	Which interpretations are							
I ₂	false	false	false	false $ imes$	models?							
I_3	true	true	false	false M								
I_4	true	true	true	false M								
I_5	true	true	false	true 🗙								

Logical Consequence

Definition (logical consequence)
If KB is a set of clauses and G is a conjunction of atoms, G is
a logical consequence of KB, written KB ⊨ G, if G is true in
every model of KB.

- we also say that <u>G</u> logically follows from <u>KB</u>, or that <u>KB</u> entails <u>G</u>.
- In other words, $KB \models G$ if there is no interpretation in which KB is *true* and G is *false*.

Example: Logical Consequences S р q r $KB = \begin{cases} p \leftarrow q. \ \checkmark \\ \underline{q.} \\ r \leftarrow s. \ \checkmark \end{cases}$ \mathbf{I}_1 true true true true Smodels false true I_2 true true false **|**3 false true true false true <u>irríe</u> true true true 2⁴ = 16 interpretations in total, only 3 are models false true false true false true false false false true false false true true remaining 8 connot F be models be models becomse 9 is talse 1 Which of the following is true? • $(KB \models q) KB \models p, KB \models s, KB \not\models r$ CPSC 322, Lecture 20 Slide 17

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

One simple way to prove that G logically follows from a KB

- Collect all the models of the KB
- Verify that G is true in all those models

Caset of atoms P1, P2, ... You have to Any problem with this approach? check of the interpretations 2" interpretations

 The goal of proof theory is to find proof procedures that allow us to prove that a logical formula follows form a KB avoiding the above is logically entailed by

Soundness and Completeness

- If I tell you I have a proof procedure for PDCL
- What do I need to show you in order for you to trust my procedure?
 - KB ⊢ G means G can be derived by my proof procedure from KB.
 - Recall $KB \models G$ means G is true in all models of KB.

Definition (soundness)
A proof procedure is sound if $KB \vdash G$ implies $KB \models G$.Definition (completeness)
A proof procedure is complete if $KB \models G$ implies $KB \vdash G$.CPSC 322, Lecture 20Slide 20

Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of *modus ponens*: $f = (h \leftarrow b_1 \land \dots \land b_m)$ is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause. (This rule also covers the case when m=0.)

Bottom-up proof procedure

 $(KB \vdash G)$ if $G \subseteq C$ at the end of this procedure:

repeat

select clause " $h \leftarrow b_1 \land \dots \land b_m$ " in KB such that $b_i \in C$ for all *i*, and $h \notin C$; $C := C \cup \{h\}$

until no more clauses can be selected.

Bottom-up proof procedure: Example							
z ← f ∧ e							
$q \leftarrow f \land g \land z$	$C := \{\}:$						
е←а∧b	repeat						
а	select clause " $h \leftarrow b_1 \land \dots \land b_m$ " in KB such that $b \in C$ for all <i>i</i> and $b \notin C$						
b	$C := C \cup \{h\}$						
r	until no more clauses can be selected.						
f							
which one?	KBH {Z,9,2}						
is correct .	$KBH\{r,z,b\}$						
	KBH[q,a]	Slide 23					

Learning Goals for today's class

You can:

- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a knowledge base.
- Define/read/write/trace/debug the bottom-up < proof procedure.

Next class

(still section 5.2)

- Soundness and Completeness of Bottom-up Proof Procedure
- Using PDC Logic to model the electrical domain
- Reasoning in the electrical domain

Study for midterm (Mon Oct 29)

Midterm: ~6 short questions (*10pts each*) + 2 problems (*20pts each*)

- Study: textbook and inked slides
- Work on **all** practice exercises and **revise assignments**!
- While you revise the learning goals, work on review questions (will post today) I may even reuse some verbatim ⁽²⁾
- Will post a **couple of problems** from previous offering (maybe slightly more difficult) ... but I'll give you the solutions ③