Representational Dimensions

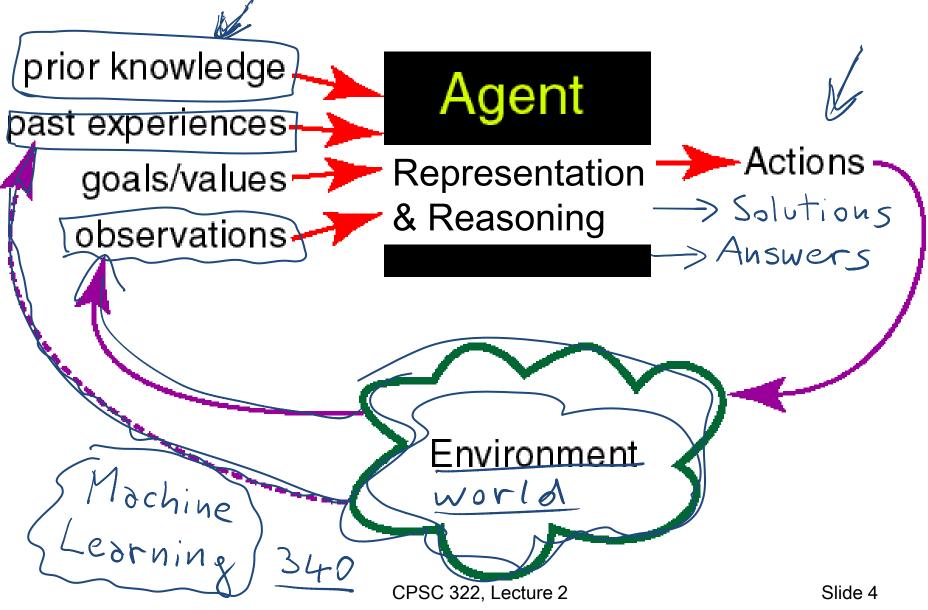
Computer Science cpsc322, Lecture 2
(Textbook Chpt1)

Sept, 7, 2012

Lecture Overview

Recap from last lecture

Representation and Reasoning


An Overview of This Course

 Further Dimensions of Representational Complexity

Course Essentials

- Course web-page : CHECK IT OFTEN!
- Textbook: Available online!
 - We will cover at least Chapters: 1, 3, 4, 5, 6, 8, 9
- Connect: discussion board, grades
- Alspace : online tools for learning Artificial Intelligence http://aispace.org/
- Lecture slides...
- Midterm exam, Mon, Oct 29(1 hours, regular room)

Agents acting in an environment

Lecture Overview

Recap from last lecture

Representation and Reasoning

An Overview of This Course

 Further Dimensions of Representational Complexity

What do we need to represent?

• The environment /world: What different configurations (states / possible worlds) can the world be in, and how do we denote them?

Chessboard, Info about a patient, Robot Location

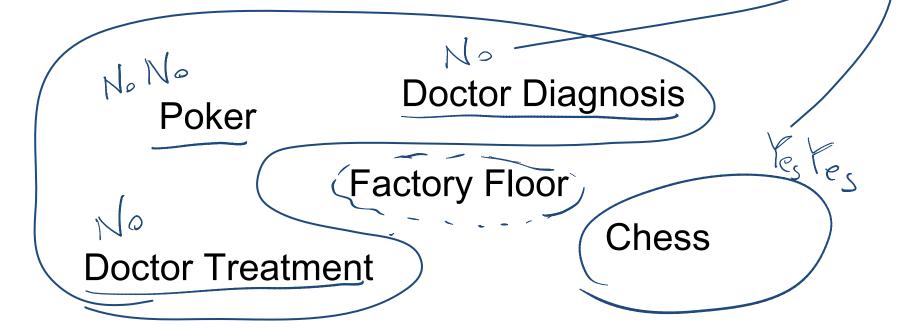
- How the world works (we will focus on)
 - Constraints: sum of current into a node = 0
 - Causal: what are the causes and the effects of brain disorders?
 - Actions preconditions and effects: when can I press this button? What happens if I press it?

Corresponding Reasoning Tasks / Problems

- Constraint Satisfaction Find state that satisfies set of constraints. E.g., What is a feasible schedule for final exams?
- Answering Query Is a given proposition true/likely given what is known? E.g., Does this patient suffers from viral hepatitis?
- Planning Find sequence of actions to reach a goal state / maximize utility. E.g., Navigate through and environment to reach a particular location. Collect gems and avoid monsters

Representation and Reasoning System

 A (representation) language in which the environment and how it works can be described


 Computational (reasoning) procedures to compute a solution to a problem in that environment (an answer, a sequence of actions)

4

But the choice of an appropriate R&R system depends on a key property of the environment and of the agent's knowledge

Deterministic vs. Stochastic (Uncertain) Domains

- Sensing Uncertainty: Can the agent fully observe the current state of the world?
- Effect Uncertainty: Does the agent knows for sure what the effects of its actions are?

Deterministic vs. Stochastic Domains

Historically, AI has been divided into two camps: those who prefer representations based on **logic** and those who prefer **probability**.

A few years ago, CPSC 322 covered logic, while CPSC 422 introduced probability:

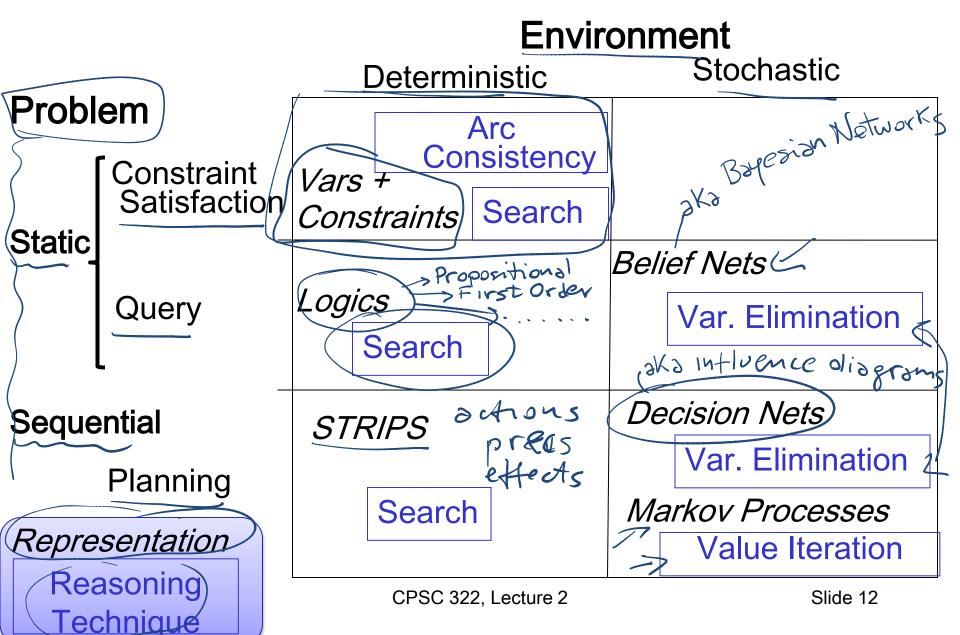
- now we introduce both representational families in 322, and 422 goes into more depth
- this should give you a better idea of what's included in Al

Note: Some of the most exciting current research in AI is actually building bridges between these camps.

CPSC 322, Lecture 2

Slide 10

Lecture Overview


Recap from last lecture

Representation and Reasoning

An Overview of This Course

 Further Dimensions of Representational Complexity

Modules we'll cover in this course: R&Rsys

Lecture Overview

Recap from last lecture

Representation

An Overview of This Course

 Further Dimensions of Representational Complexity

Dimensions of Representational Complexity

We've already discussed:

- Problems /Reasoning tasks (Static vs. Sequential)
- Deterministic versus stochastic domains

Some other important dimensions of complexity:

- Explicit state or propositions or relations
- Flat or hierarchical
- Knowledge given versus knowledge learned from experience

The binary teatures

- Goals versus complex preferences Single-agent vs. multi-agent

Explicit State or propositions

How do we model the environment?

- You can enumerate the states of the world. ethical
- A state can be described in terms of features
 - Often it is more natural to describe states in terms of assignments of values to features (variables).
 - 30 binary features (also called propositions) can one possible state {5,+35,30,110} represent $2^{30} = 1,073,741,824$ states.

Mars Explorer Example

2 # 81 # 360 % 180 number of possibible states mutually exclusive

Explicit State or propositions or relations

 States can be described in terms of objects and relationships.

 There is a proposition for each relationship on each "possible" tuple of individuals.

University Example

1 relationship

Registred(S,C)

Students (S) = { $S_1 S_2 S_3 S_4$ }

Courses (C) = { $C_1 C_2 C_3$ Individuals objects

• Textbook example: One binary relation and 10 individuals can represents 10²=100 propositions and 2¹⁰⁰ states!

Complete Example

Flat or hierarchical

Is it useful to model the whole world at the same level of abstraction?

- You can model the world at one level of abstraction:
 flat
- You can model the world at multiple levels of abstraction: hierarchical
- Example: Planning a trip from here to a resort in Cancun,

Mexico

Knowledge given vs. knowledge learned from experience

The agent is provided with a model of the world once and far all

not in this course

- The agent can learn how the world works based on experience
 - in this case, the agent often still does start out with some prior knowledge

Goals versus (complex) preferences

An agent may have a **goal** that it wants to achieve <

 e.g., there is some state or set of states of the world that the agent wants to be in

e.g., there is some **proposition or set of propositions** that the agent wants to make true An agent may have preferences [0,2]

• e.g., there is some == *

- e.g., there is some **preference/utility function** that describes how happy the agent is in each state of the world; the agent's task is to reach a state which makes it as happy as possible
- Preférences can be complex...

but Coppucing takes 2mins What beverage to order?

Espresso takes 1 min The sooner I get one the better

Agent must consider Cappuccino better than Espresso

Single-agent vs. Multiagent domains

- Does the environment include other agents?
- Everything we've said so far presumes that there is only one agent in the environment.
- If there are other agents whose actions affect us, it can be useful to explicitly model their goals and beliefs rather than considering them to be part of the environment
- Other Agents can be: cooperative, competitive, or a bit of both

Dimensions of Representational Complexity in CPSC322 not in this

- Reasoning tasks (Constraint Satisfaction / Logic&Probabilistic Inference / Planning)
- Deterministic versus stochastic domains
 Some other important dimensions of complexity:
- Explicit state or features or relations
- Flat or hierarchical
- Knowledge given versus knowledge learned from experience
- Goals vs. (complex) preferences
- Single-agent vs. multi-agent

grad Course

- Assignment 0 due: submit electronically and you can't use late days
- Hint: AAAI is the main AI association
- Come to class ready to discuss the two examples of fielded Al agents you found or experimental
- I'll show some pictures of cool applications in that class
- Read carefully Section 1.6 on textbook: "Example" Applications"
 - The Tutoring System
 - The trading agent

- The autonomous delivery robot
- The diagnostic assistant

