Stochastic Local Search Variants

Computer Science cpsc322, Lecture 16

(Textbook Chpt 4.8)

Oct, 12, 2012

Lecture Overview

Recap SLS

SLS variants

Stochastic Local Search

- Key Idea: combine greedily improving moves with randomization
 - As well as improving steps we can allow a "small probability" of:
 - Random steps: move to a random neighbor. 1%
 - Random restart: reassign random values to all 5 % variables.
 - Always keep best solution found so far
 - Stop when
 - Solution is found (in vanilla CSP .pw. sxh.fyung & C.)
 - Run out of time (return best solution so far)

Lecture Overview

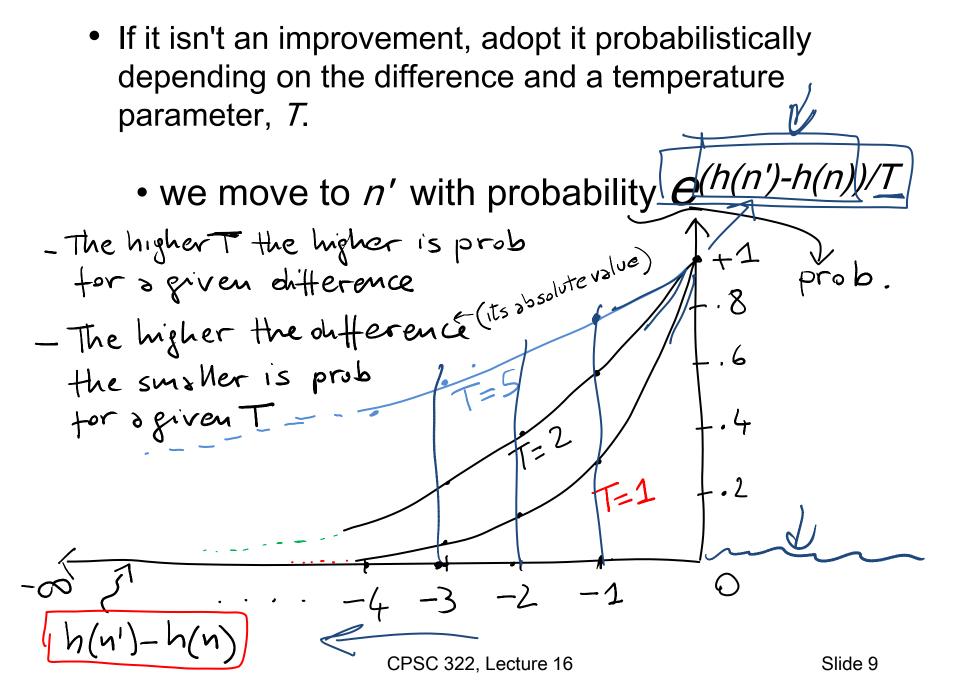
- Recap SLS
- SLS variants
 - Tabu lists
 - Simulated Annealing
 - Beam search
 - Genetic Algorithms

Tabu lists

- To avoid search to
 - Immediately going back to previously visited candidate
 - To prevent cycling
- Maintain a tabu list of the k ast nodes visited.
 - Don't visit a poss. world that is already on the tabu list.

Cost of this method depends on...

Simulated Annealing


- Key idea: Change the degree of randomness....
- Annealing: a <u>metallurgical process</u> where metals are hardened by being slowly cooled.
 - Analogy: start with a high ``temperature": a high tendency to take random steps
 - Over time, cool down: more likely to follow the scoring function
- Temperature reduces over time, according to an annealing schedule

Simulated Annealing: algorithm

Here's how it works (for maximizing):

- You are in node n. Pick a variable at random and a new value at random. You generate n'
- If it is an improvement i.e., h(u) > h(u), adopt it.
- If it isn't an improvement, adopt it probabilistically depending on the difference and a temperature parameter, T.
 - we move to n' with probability $e^{(h(n')-h(n))}$

see next shide

Properties of simulated annealing search

One can prove: If <u>T decreases slowly enough</u>, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.

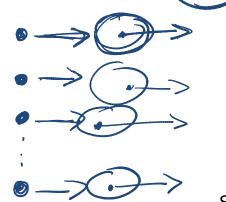
Finding the ideal cooling schedule is unique to each class of problems

Lecture Overview

- Recap SLS
- SLS variants
 - Simulated Annealing
 - Population Based
 - √ Beam search
 - √ Genetic Algorithms

Population Based SLS

Often we have more memory than the one required for current node (+ best so far + tabu list)


Key Idea: maintain a population of *k* individuals

- At every stage, update your population.
- Whenever one individual is a solution, report it.

Simplest strategy: Parallel Search

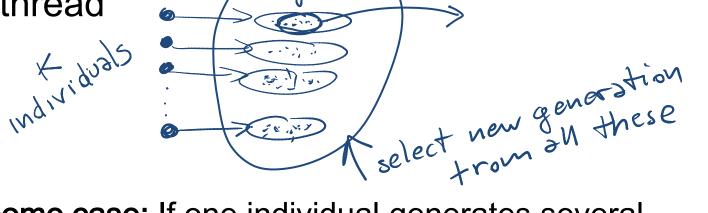
- All searches are independent
- Like k restarts

 but more memory in the possion no reasons to use it!

CPSC 322, Lecture 16

Slide 12

Population Based SLS: Beam Search


Non Stochastic

• Like parallel search, with *k* individuals, but you choose the *k* best out of all of the neighbors.

Useful information is passed among the k parallel

 Neighbors

search thread

• Troublesome case: If one individual generates several good neighbors and the other k-1 all generate bad successors... the next generation will comprise very similar individuals i

Population Based SLS: Stochastic Beam Search

- Non Stochastic Beam Search may suffer from lack of diversity among the k individual (just a more expensive hill climbing)
- Stochastic version alleviates this problem:
 - Selects the k individuals at random
 - But probability of selection proportional to their value (according to scoring function)

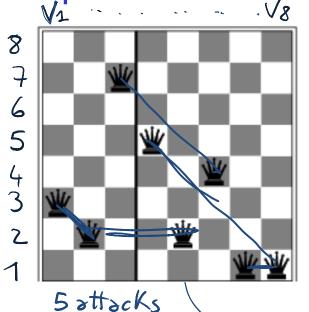
Stochastic Beam Search: Advantages

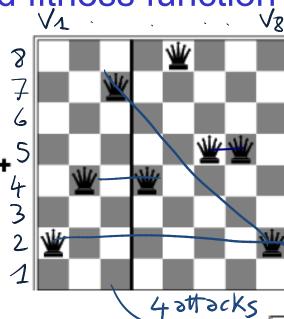
- It maintains diversity in the population.
- Biological metaphor (asexual reproduction):
 - ✓ each individual generates "mutated" copies of itself (its neighbors)
 - ✓ The <u>scoring function value</u> reflects the fitness of the individual
 - √the higher the fitness the more likely the individual will survive (i.e., the neighbor will be in the next generation)

Lecture Overview

- Recap SLS
- SLS variants
 - Simulated Annealing
 - Population Based
 - √ Beam search
 - √ Genetic Algorithms

Population Based SLS: Genetic Algorithms


Start with k randomly generated individuals (population)



- An individual is represented as a string over a finite alphabet (often a string of 0s and 1s)
- A successor is generated by combining two parent individuals (loosely analogous to how DNA is spliced in sexual reproduction)
- Evaluation/Scoring function (fitness function). Higher values for better individuals.
- Produce the next generation of individuals by selection, crossover, and mutation

Genetic algorithms: Example & queen

Representation and fitness function $\sqrt{2}$

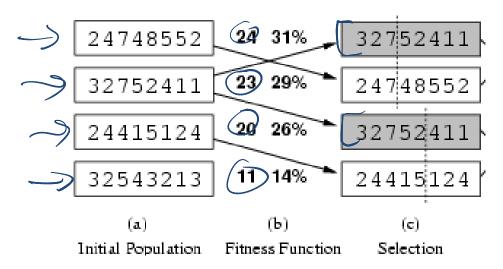
8. + - 28

28 - 4

State: string over finite alphabet

24748552

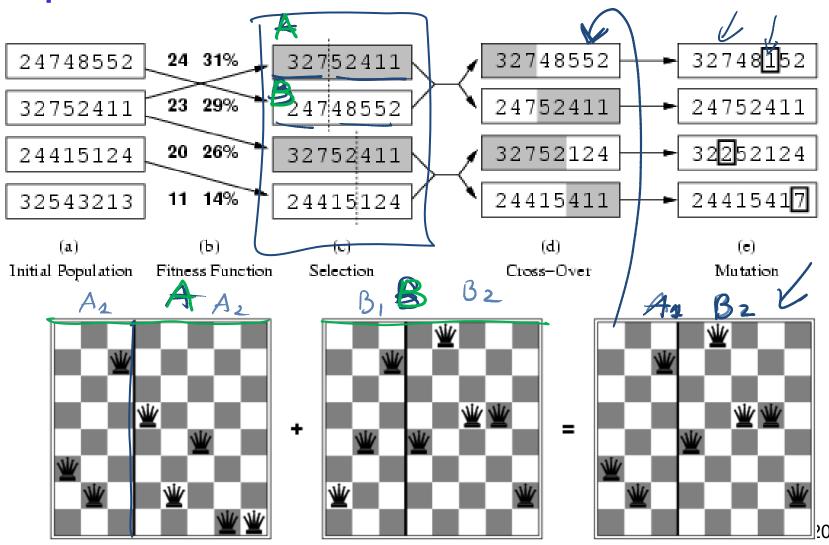
Fitness function: higher value


better states. # queen pairs not attacking each other

32752411

Slide 18

Genetic algorithms: Example


Selection: common strategy, probability of being chosen for reproduction is directly proportional to fitness score

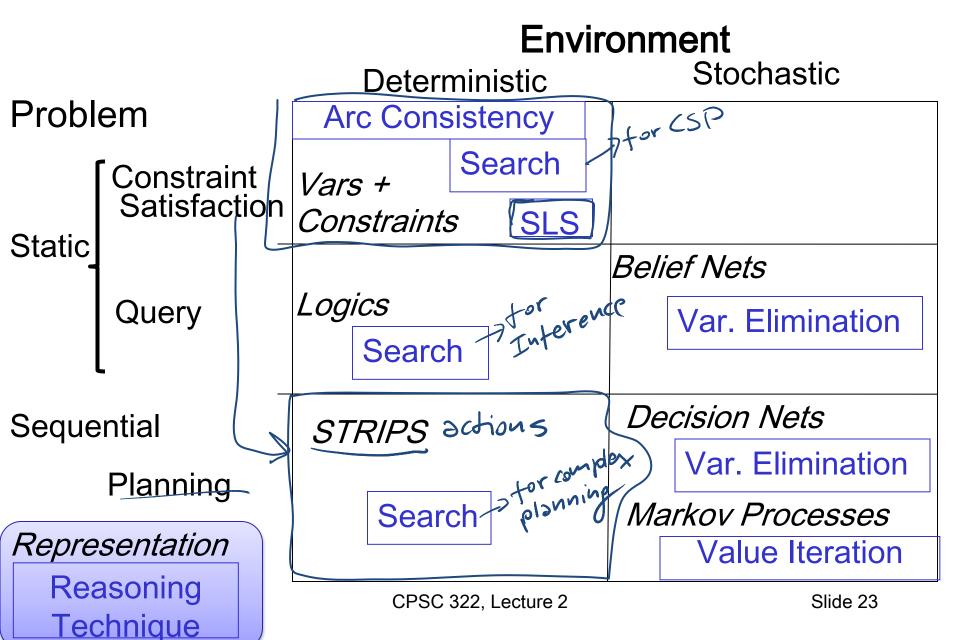
$$24/(24+23+20+11) = 31\%$$

 $23/(24+23+20+11) = 29\%$ etc

Genetic algorithms: Example

Reproduction: cross-over and mutation

Genetic Algorithms: Conclusions


- Their performance is very sensitive to the choice of state representation and fitness function
- Extremely slow (not surprising as they are inspired by evolution!)

Learning Goals for today's class

You can:

- Implement a tabu-list.
- Implement the simulated annealing algorithm
- Implement population based SLS algorithms:
 - Beam Search
 - Genetic Algorithms.
- Explain pros and cons of different SLS algorithms.

Modules we'll cover in this course: R&Rsys

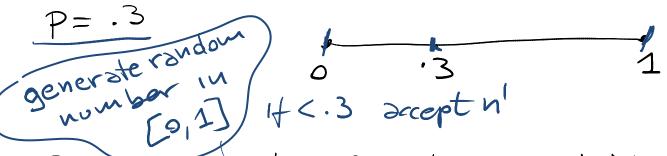
Assignment-2 on CSP will be out this evening (programming!)

Next class

How to select and organize a sequence of actions to achieve a given goal...

.

Start Planning (Chp 8.1-8.2 *Skip 8.1.1-2*)


322 Feedback © or 8

- Lectures
- Slides
- Practice
 Exercises
- Assignments
- Alspace
-

- Textbook
- Course Topics / Objectives
- TAs
- Learning Goals
-

Sampling a discrete probability distribution

e.g. Sim. Amesling. Select n' with probability P

e.g. Beam Search: Select Kindividuals. Probability of selection proportional to their value

$$\rightarrow N_1$$
 $P_{1} = .1$
 $\rightarrow N_2$ $P_{2} = .3$
 $\rightarrow N_3$ $P_{3} = .2$
 $\rightarrow N_4$ $P_{4} = .4$

SAME HERE

Na secon

1 3 2 4 5 5 m

1 2 1 1 1 1

CPSC 322, Lecture 16

Slide 26