Department of Computer Science
Undergraduate Events

https://www.cs.ubc.ca/students/undergrad/life/upcoming-events

IBM Info Session

Tues. Oct 16

SAP Code Slam 5:30 pm

Sat. Oct 13 noon to Wesbrook 100

Sun. Oct 14 noon

DMP 110 Global Relay Open House
Thurs. Oct 18
4:30 - 6:30 pm

220 Cambie St. 2" Floor

https://www.cs.ubc.ca/students/undergrad/life/upcoming-events
https://www.cs.ubc.ca/students/undergrad/life/upcoming-events
https://www.cs.ubc.ca/students/undergrad/life/upcoming-events

Stochastic Local Search

Computer Science cpsc322, Lecture 15
(Textbook Chpt 4.8)

Oct, 10, 2012

CPSC 322, Lecture 15 Slide 2

Announcements

 Thanks for the feedback, we’ll discuss it on Mon

« Assignment-2 on CSP will be out on Fri
(programming!)

CPSC 322, Lecture 10 Slide 3

Lecture Overview

» Recap Local Search in CSPs

&

CPSC 322, Lecture 15 Slide 4

Local Search: Summary

A useful method in practice for large CSPs
* Start from a possible world ~(randowy c\/\ose/v\>

°/9enerate some neighbors (‘similar” possible worlds)
— e,cﬁ OEAH-@F Lrovn wrrwt poss. wold om\j bu‘ ave varishle's

velue
* Move from current node to a neighbor, selected to
_minimize/maximize a scoring function which combines:
v’ Info about how many constraints are violated

v’ Information about the cost/quality of the solution (you want the
best solution, not just a solution)

CPSC 322, Lecture 15 Slide 5

Hill Climbing

NOTE: Everything that will be said for Hill
Climbing is also true for Greedy Descent

Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

ob_icctivifunction

shoulder

global maximum

/

A

local maximum

/

"flat" local maximum
(Plateau)

state space

cutrent)(:-[o) 2,2, .j

state

Corresponding problem for GreedyDescent

Local minimum example 8-queens problem
Va . . . ~ s \/49

A local minimum with A = 7

CPSC 322, Lecture 5 Slide 8

Even more Problems in higher dimensions

E.g., Ridges — sequence of local maxima not
directly connected to each other

From each local maximum you can only
go downhill

(C o‘(\\ v OK
o)(o

e

CPSC 322, Lecture 5 Slide 9

Lecture Overview

» Stochastic Local Search (SLS)

CPSC 322, Lecture 15 Slide 10

Stochastic Local Search

GOAL: We want our local search
* to be guided by the scoring function
* Not to get stuck in local maxima/minima, plateaus etc.

« SOLUTION: We can alternate
a) Hill-climbing steps
b) Random steps: move to a random neighbor.
C) Random restart: reassign random values to all

Va”ableﬁsb*“”‘ d) wmove To Wi whch

X < —> wmWiproves s@r{ma/
OM/‘L\ <}-Og/v\c;c]’\‘ol/\

— b> ge[e(f N, r‘aV\o‘oW‘,‘t
=>) uwmp To > candom

2 V] K CRPSC 322, Lecture 15 YD 5SS WO‘(\O\ Slide 11

Which randomized method would work best in each of
these two search spaces?

Evaluation function Evaluation function
A A A B
> (1 vari State Spa
State Space (1 variable) tate Space
(1 variable)

Greedy descent with random steps best on A
Greedy descent with random restart best on B

Which randomized method would work best in each of
the these two search spaces?

Evaluation function Evaluation function
A A A B
> (1 vari State Spac
State Space (1 variable) tate Space

le)

« But these examples are simplified extreme cases for illustration
- In practice, you don’t know what your search space looks like

« Usually integrating both kinds of randomization works best

Random Steps (Walk)

Let’'s assume that neighbors are generated as

* assignments that differ in one variable's value

How many neighbors there are given n variables with

domains with d values? @ (o _;J
One strategy to add randomness 10 the— 7 erntiles

selection variable-value pair.
Sometimes choose the pair L

Va Vs V3V, V5 Ve VJV‘Y

g According to the scoring function dBRCHE ROE
% A random on 2 ([e e () <) e
3 || 14 18 15 (2])14
E.G in 8-queen dnes 4 (I N -] -
« How many neighbors? §.) 7 N
e /1 chpose one ok ‘wcled ones A&\/\&j 6 N+ RS O
...... ‘H/\Q, cC(\C o(\/(fg :)_ ia w 5 w
2 chogse ‘fbVldOV"\IVOM@ OLP%& YA 8 1 7 L 18
CPSC 322, Lecture 5 71 Slide 14

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

* Sometimes select variable:
— 1. that participates in the largest number of conflicts. Vs
2. at random, any variable that participates in some conflict.
3. atrandom \/,, Wi Vs VgD =
* Sometimes choose value Vi Vo Vs VL VG VA Ve
~ a) That minimizes # of conflicts Z

b) at random<&™ M oAty 4 select:

SoN PV W N D

Aispace

2 a: Greedy Descent with \ W' M
Min-Conflict Heuristic CPSC 322, Lecture 5 A Condls Zslide 15

Successful application of SLS

« Scheduling of Hubble Space Telescope:
reducmg tlme to schedule _Leejgs_of

fror%; one weekto around @

\

of . &
oM
st Ul
o G

CPSC 322, Lecture 5 Slide 16

Example: SLS for RNA secondary structure design
RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function RNA strand

Predicting structure for a GUCCCAUAGGAUGUCCCAUAGGA
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure? T
* Local search over strands Hard
v' Search for one that folds
into the right structure SeCOﬂdary structure

* Evaluation function for a strand Hairpin loop
v Run O(n3) prediction algorithm

v Evaluate how different the result is
from our target structure

v Only defined implicitly, but can be
evaluated by running the prediction algorithm

Multibranched loop

Stacked pairs

Internal loop
External base

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

CPSC 322, Lecture 1 17

CSP/logic: formal verification

SR
Hardware verification Software verification
(e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:
Encodings into propositional satisfiability (SAT)

CPSC 322, Lecture 1 18

(Stochastic) Local search advantage:

Online setting
When the problem can change (particularly
important in scheduling)

E.g., schedule for airline: thousands of flights and
thousands of personnel assignment

e Storm can render the schedule infeasible
Goal: Repair with minimum number of changes

This can be easily done with a local search starting
form the current schedule

Other techniques usually:
* require more time
* might find solution requiring many more changes

SLS limitations

« Typically no guarantee to find a solution even if one exists

* SLS algorithms can sometimes stagnate
v Get caught in one region of the search space and never terminate

* Very hard to analyze theoretically

* Not able to show that no solution exists
* SLS simply won't terminate

* You don’t know whether the problem is infeasible or the
algorithm has stagnated

SLS Advantage: anytime algorithms

* When should the algorithm be stopped ?

* When a solution is found
(e.g. no constraint violations)

* Or when we are out of time: you have to act NOW

* Anytime algorithm:
v’ maintain the node with best h found so far (the “incumbent”)
v’ given more time, can improve its incumbent

Lecture Overview

» Stochastic Local Search (SLS)
» Comparing SLS algorithms

CPSC 322, Lecture 15 Slide 22

Evaluating SLS algorithms

« SLS algorithms are randomized
* The time taken until they solve a problem is a random variable

* Itis entirely normal to have runtime variations of 2 orders of
magnitude in repeated runs!

v E.g. 0.1 seconds in one run, 10 seconds in the next one
v"On the same problem instance (only difference: random seed)

v'Sometimes SLS algorithm doesn’t even terminate at all:
stagnation

« |If an SLS algorithm sometimes stagnates, what is its mean
runtime (across many runs)?
* Infinity!
* In practice, one often counts timeouts as some fixed large value X

e Still, summary statistics, such as mean run time or median run
time, don't tell the whole story

v E.g. would penalize an algorithm that often finds a solution quickly but
sometime stagnates

Comparing Stochastic Algorithms: Challenge

« Summary statistics, such as mean run time, median run
time, and mode run time don't tell the whole story

* What is the running time for the runs for which an algorithm never
finishes (infinite? stopping time?)

% of solved runs

100% .
57 o
= 2.5 7%
s 11/44
it T —

v

runtime / steps

CPSC 322, Lecture 5 Slide 24

First attempt....

 How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn't
halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve
the rest

C. one solves the problem in 100% of the cases, but slowly?

Jo-of solved runs

100% 1 C) ‘ o

S

N

’1;070

411%

L
N

A > Mean runtime / steps

of solved run%I

CPSC 322, Lecture 5 ide 25

Runtime Distributions are even more

effective

Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.
* |og scale on the x axis is commonly used

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

.I

0.8}
0.8}
0.7}
0.6}
0.5}
0.4}
0.3}
0.2}
04}

0

I”‘IIIIJ III ””1I[I3EI 1000

A

C

of steps

CPSC 322, Lecture 5

Slide 26

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

* Typically use a log scale on the x axis

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

10 dqo0 1000
of steps

- red green

Which algorithm is most likely to
solve the problem within 7 steps?

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

* Typically use a log scale on the x axis

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

1 | III“”‘IICI | II””1ICID | I”“'IIC;CID

of steps
Which algorithm is most likely to

solve the problem within 7 steps? ed

Comparing runtime distributions

« Which algorithm has the best median performance?

* l.e., which algorithm takes the fewest number of steps to be
successful in 50% of the cases?

- red green

1 T — T

Fraction of -
solved runs, i.e.
0.8
P(solvedby]
this # of

steps/time)

1000
of steps

Comparing runtime distributions

« Which algorithm has the best median performance?
* l.e., which algorithm takes the fewest number of steps to be

successful in 50% of the i

Fraction of

08
solved runs, i.e.
0.8
P(solvedby]
this # of

steps/time)

1000
of steps

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime
* Typically use a log scale on the x axis

1 — . Slow, but does

Fraction of osl Crossover point: | not stagnate
solved runs, i.e. if we run longer than 80
0.8 steps, green is the
P(solved by 0.7 best algorithm\
this # of 0.6 1 57% solved
os| If we run less than | after 80 steps,

steps/time) 10 steps, red is the

best algorithm\

|then stagnate

A—————— 7t L7101 \ V=10
1after 10 steps,
| then stagnate

10 dqo0 1000
of steps

Runtime distributions in Alspace

* Let's look at some algorithms and their runtime
distributions:

1. Greedy Descent
2. Random Sampling
3. Random Walk

4. Greedy Descent with random walk @ space

« Simple scheduling problem 2 in Alspace:

What are we going to look at in Alspace

When selecting a variable first || Alspace terminology
followed by a value: < %eeps cesterhi,

(Randor/n samm (?
* Sometimes select variable: *r%ﬁzrfg

1. that participates in the Random walk 3k
largest number of conflicts. —

2. at random, any variable that Greedy Descent 1 o
participates in some conflict. —

3. atrandom Greedy Descent Min

* Sometimes choose value conflict &?

a) That minimizes # of conflicts / Greedy Descent with
b) at random random Walk%_aé

Greedy Descent with
random restart

CPSC 322, Lecture 5 Slide 33

Stochastic Local Search

« Key Idea: combine greedily improving moves with
randomization

* As well as improving steps we can allow a “small
probability” of: e.§.
g
* Random steps: move to a random neighbor. 1%

* Random restart: reassign random values to all g o
variables. ¢

 Always keep best solution found so far

« Stop when

* Run out of time (return best solution so far)

CPSC 322, Lecture 5 Slide 34

Learning Goals for today’s class

You can:

* Implement SLS with
* random steps (1-step, 2-step versions)
* random restart

 Compare SLS algorithms with runtime
distributions

CPSC 322, Lecture 4 Slide 35

Assign-2

* Will be out on Tue
» Assignments will be weighted:
A0 (12%), A1...A4 (22%) each

Next Class

 More SLS variants
* Finish CSPs
» (if time) Start planning

CPSC 322, Lecture 15 Slide 36

