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Stochastic Local Search 
Computer Science cpsc322, Lecture 15 

(Textbook Chpt 4.8) 

 

Oct, 10, 2012 



Announcements 

• Thanks for the feedback, we’ll discuss it on Mon 

 

• Assignment-2 on CSP will be out on Fri 

(programming!) 
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Lecture Overview 

 

• Recap Local Search in CSPs 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 
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Local Search: Summary 

• A useful method in practice for large CSPs 

• Start from a possible world 

 

• Generate some neighbors ( “similar” possible worlds) 

 

• Move from current node to a neighbor, selected to 

minimize/maximize a scoring function which combines: 

 Info about how many constraints are violated 

 Information about the cost/quality of the solution (you want the 

best solution, not just a solution) 

 



CPSC 322, Lecture 5 Slide 6 

Hill Climbing 

NOTE: Everything that will be said for Hill 

Climbing is also true for Greedy Descent 
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Problems with Hill Climbing 

Local Maxima. 

Plateau - Shoulders 

 

 
(Plateau) 
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Corresponding problem for GreedyDescent 

Local minimum example: 8-queens problem 

 

A local minimum with h = 1 
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Even more Problems in higher dimensions 
 

E.g., Ridges – sequence of local maxima not 

directly connected to each other  

From each local maximum you can only 

     go downhill 
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Lecture Overview 

 

• Recap Local Search in CSPs 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 
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Stochastic Local Search 

GOAL: We want our local search  

• to be guided by the scoring function 

• Not to get stuck in local maxima/minima, plateaus etc. 

 

• SOLUTION: We can alternate  
a) Hill-climbing steps 

b) Random steps: move to a random neighbor. 

c) Random restart: reassign random values to all 
variables. 



 

Which randomized method would work best in each of 

these two search spaces?  

 

Greedy descent with random steps best on A 

Greedy descent with random restart best on B 

 Greedy descent with random steps best on B 

Greedy descent with random restart best on A 

 equivalent 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  

(1 variable) 

A B 



• But these examples are simplified extreme cases for illustration 

- in practice, you don’t know what your search space looks like 

 

• Usually integrating both kinds of randomization works best  

 

Greedy descent with random steps best on B 

Greedy descent with random restart best on A 

 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  

(1 variable) 

A B 

 

Which randomized method would work best in each of 

the these two search spaces?  
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Random Steps (Walk) 

Let’s assume that neighbors are generated as 
• assignments that differ in one variable's value 

How many neighbors there are given n variables with 
domains with d values? 

One strategy to add randomness to the 
selection variable-value pair. 
Sometimes choose the pair 

• According to the scoring function 

• A random one 
 E.G in 8-queen 

• How many neighbors? 

• …….. 
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Random Steps (Walk): two-step 

Another strategy: select a variable first, then  a value: 

• Sometimes select variable: 
1.  that participates in the largest number of conflicts. 

2.  at random, any variable that participates in some conflict. 

3.  at random 

• Sometimes choose value 
a) That minimizes # of conflicts 

b) at random 

 

0 

2 

2 

3 

3 

2 

3 Aispace 

2 a: Greedy Descent with 
Min-Conflict Heuristic 
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Successful application of SLS 

• Scheduling of Hubble Space Telescope: 

reducing time to schedule 3 weeks of 

observations: 

 from one week to around 10 sec. 
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Example: SLS for RNA secondary structure design 
RNA strand made up of four bases: cytosine 
(C), guanine (G), adenine (A), and uracil (U) 

2D/3D structure RNA strand folds into  
is important for its function 

Predicting structure for a  
strand is “easy”: O(n3) 

But what if we want a strand that folds  
into a certain structure? 

• Local search over strands 

 Search for one that folds  
into the right structure 

• Evaluation function for a strand 

 Run O(n3) prediction algorithm 

 Evaluate how different the result is  
from our target structure 

 Only defined implicitly, but can be  
evaluated by running the prediction algorithm 

RNA strand 
GUCCCAUAGGAUGUCCCAUAGGA 

Secondary structure 

Easy Hard 

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC 

[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004] 
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CSP/logic: formal verification 

18 

 

 

 

 

 

 

  Hardware verification                      Software verification 

            (e.g., IBM)                     (small to medium programs) 

 

Most progress in the last 10 years based on: 

    Encodings into propositional satisfiability (SAT) 
CPSC 322, Lecture 1 
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(Stochastic) Local search advantage: 

Online setting 
• When the problem can change (particularly 

important in scheduling) 

• E.g., schedule for airline: thousands of flights and 

thousands of personnel assignment 

• Storm can render the schedule infeasible 

• Goal: Repair with minimum number of changes 

• This can be easily done with a local search starting 

form the current schedule 

• Other techniques usually: 

• require more time  

• might find solution requiring many more changes 



SLS limitations 

• Typically no guarantee to find a solution even if one exists 

• SLS algorithms can sometimes stagnate 

Get caught in one region of the search space and never terminate 

• Very hard to analyze theoretically 

 

• Not able to show that no solution exists 

• SLS simply won’t terminate 

• You don’t know whether the problem is infeasible or the 

algorithm has stagnated 

 

 

 



SLS Advantage: anytime algorithms 

• When should the algorithm be  stopped ? 

• When  a  solution is found  

(e.g. no constraint violations) 

• Or when we are out of time: you have to act NOW   

• Anytime algorithm:  

maintain the node with best h found so far (the “incumbent”)  

given more time, can improve its incumbent 
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Lecture Overview 

 

• Recap Local Search in CSPs 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 



Evaluating SLS algorithms 
• SLS algorithms are randomized 

• The time taken until they solve a problem is a random variable 

• It is entirely normal to have runtime variations of 2 orders of 

magnitude in repeated runs! 

E.g. 0.1 seconds in one run, 10 seconds in the next one 

On the same problem instance (only difference: random seed) 

Sometimes SLS algorithm doesn’t even terminate at all: 

stagnation 

 

• If an SLS algorithm sometimes stagnates, what is its mean 

runtime (across many runs)? 

• Infinity! 

• In practice, one often counts timeouts as some fixed large value X 

• Still, summary statistics, such as mean run time or median run 

time, don't tell the whole story 

 E.g. would penalize an algorithm that often finds  a solution quickly but 

sometime stagnates 
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Comparing Stochastic Algorithms: Challenge 

• Summary statistics, such as mean run time, median run 

time, and mode run time don't tell the whole story 

• What is the running time for the runs for which an algorithm never  
finishes (infinite? stopping time?) 

100% 

runtime / steps 
0 10 20 30 ….. 

% of solved runs 
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First attempt…. 

• How can you compare three algorithms when 

A. one solves the problem 30% of the time very quickly but doesn't 

halt for the other 70% of the cases 

B. one solves 60% of the cases reasonably quickly but doesn't solve 

the rest 

C. one solves the problem in 100% of the cases, but slowly? 

100% 

Mean runtime / steps 

of solved runs 

% of solved runs 
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Runtime Distributions are even more 

effective 
Plots runtime (or number of steps) and the proportion (or 

number) of the runs that are solved within that runtime. 

• log scale on the x axis is commonly used 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 
     Which algorithm is most likely to 

solve the problem within 7 steps? 

 

blue green red 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 
     Which algorithm is most likely to 

solve the problem within 7 steps? 

 

red 



Comparing runtime distributions 
• Which algorithm has the best median performance? 

• I.e., which algorithm takes the fewest number of steps to be 

successful in 50% of the cases? 

 

 

 
Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

blue green red 



Comparing runtime distributions 
• Which algorithm has the best median performance? 

• I.e., which algorithm takes the fewest number of steps to be 

successful in 50% of the cases? 

 

 

 
Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

blue 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

      28% solved  

after 10 steps, 

then stagnate 

      57% solved  

after 80 steps, 

then stagnate 

      Slow, but does 

not stagnate       Crossover point: 

if we run longer than 80 

steps, green is the  

best algorithm 

       If we run less than 

10 steps, red is the 

best algorithm 



Runtime distributions in AIspace 

 

• Let’s look at some algorithms and their runtime 

distributions: 

1. Greedy Descent 

2. Random Sampling 

3. Random Walk 

4. Greedy Descent with random walk 

 

• Simple scheduling problem 2 in AIspace: 
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What are we going to look at in AIspace 

When selecting a variable first 
followed by a value: 

• Sometimes select variable: 
1.  that participates in the 

largest number of conflicts. 

2.  at random, any variable that 
participates in some conflict. 

3.  at random 

• Sometimes choose value 
a) That minimizes # of conflicts 

b) at random 

 

AIspace terminology 

Random sampling 

Random walk 

Greedy Descent 

Greedy Descent Min 
conflict 

Greedy Descent with 
random walk 

Greedy Descent with 
random restart ….. 
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Stochastic Local Search 

• Key Idea: combine greedily improving moves with 

randomization 

• As well as improving steps we can allow a “small 

probability” of: 

• Random steps: move to a random neighbor. 

• Random restart: reassign random values to all 

variables. 

• Stop when 

• Solution is found (in vanilla CSP …………………………) 

• Run out of time (return best solution so far) 

• Always keep best solution found so far 
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Learning Goals for today’s class 

You can: 

 

• Implement SLS with 

• random steps (1-step, 2-step versions) 

• random restart 

• Compare SLS algorithms with runtime 

distributions 



CPSC 322, Lecture 15 Slide 36 

Next Class 

• More SLS variants 

• Finish CSPs 

• (if time) Start planning 
 

 
 

Assign-2 

• Will be out on Tue 

• Assignments will be weighted:  

A0 (12%), A1…A4 (22%) each 


