
Department of Computer Science

Undergraduate Events

More details @

https://www.cs.ubc.ca/students/undergrad/life/upcoming-events

SAP Code Slam

Sat. Oct 13 noon to

Sun. Oct 14 noon

DMP 110

IBM Info Session

Tues. Oct 16

5:30 pm

Wesbrook 100

Global Relay Open House

Thurs. Oct 18

4:30 – 6:30 pm

220 Cambie St. 2nd Floor

https://www.cs.ubc.ca/students/undergrad/life/upcoming-events
https://www.cs.ubc.ca/students/undergrad/life/upcoming-events
https://www.cs.ubc.ca/students/undergrad/life/upcoming-events

CPSC 322, Lecture 15 Slide 2

Stochastic Local Search
Computer Science cpsc322, Lecture 15

(Textbook Chpt 4.8)

Oct, 10, 2012

Announcements

• Thanks for the feedback, we’ll discuss it on Mon

• Assignment-2 on CSP will be out on Fri

(programming!)

CPSC 322, Lecture 10 Slide 3

CPSC 322, Lecture 15 Slide 4

Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

CPSC 322, Lecture 15 Slide 5

Local Search: Summary

• A useful method in practice for large CSPs

• Start from a possible world

• Generate some neighbors (“similar” possible worlds)

• Move from current node to a neighbor, selected to

minimize/maximize a scoring function which combines:

 Info about how many constraints are violated

 Information about the cost/quality of the solution (you want the

best solution, not just a solution)

CPSC 322, Lecture 5 Slide 6

Hill Climbing

NOTE: Everything that will be said for Hill

Climbing is also true for Greedy Descent

CPSC 322, Lecture 5 Slide 7

Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

(Plateau)

CPSC 322, Lecture 5 Slide 8

Corresponding problem for GreedyDescent

Local minimum example: 8-queens problem

A local minimum with h = 1

CPSC 322, Lecture 5 Slide 9

Even more Problems in higher dimensions

E.g., Ridges – sequence of local maxima not

directly connected to each other

From each local maximum you can only

 go downhill

CPSC 322, Lecture 15 Slide 10

Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

CPSC 322, Lecture 15 Slide 11

Stochastic Local Search

GOAL: We want our local search

• to be guided by the scoring function

• Not to get stuck in local maxima/minima, plateaus etc.

• SOLUTION: We can alternate
a) Hill-climbing steps

b) Random steps: move to a random neighbor.

c) Random restart: reassign random values to all
variables.

Which randomized method would work best in each of

these two search spaces?

Greedy descent with random steps best on A

Greedy descent with random restart best on B

 Greedy descent with random steps best on B

Greedy descent with random restart best on A

 equivalent

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

A B

• But these examples are simplified extreme cases for illustration

- in practice, you don’t know what your search space looks like

• Usually integrating both kinds of randomization works best

Greedy descent with random steps best on B

Greedy descent with random restart best on A

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

A B

Which randomized method would work best in each of

the these two search spaces?

CPSC 322, Lecture 5 Slide 14

Random Steps (Walk)

Let’s assume that neighbors are generated as
• assignments that differ in one variable's value

How many neighbors there are given n variables with
domains with d values?

One strategy to add randomness to the
selection variable-value pair.
Sometimes choose the pair

• According to the scoring function

• A random one
 E.G in 8-queen

• How many neighbors?

• ……..

CPSC 322, Lecture 5 Slide 15

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

• Sometimes select variable:
1. that participates in the largest number of conflicts.

2. at random, any variable that participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

0

2

2

3

3

2

3 Aispace

2 a: Greedy Descent with
Min-Conflict Heuristic

CPSC 322, Lecture 5 Slide 16

Successful application of SLS

• Scheduling of Hubble Space Telescope:

reducing time to schedule 3 weeks of

observations:

 from one week to around 10 sec.

17

Example: SLS for RNA secondary structure design
RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function

Predicting structure for a
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure?

• Local search over strands

 Search for one that folds
into the right structure

• Evaluation function for a strand

 Run O(n3) prediction algorithm

 Evaluate how different the result is
from our target structure

 Only defined implicitly, but can be
evaluated by running the prediction algorithm

RNA strand
GUCCCAUAGGAUGUCCCAUAGGA

Secondary structure

Easy Hard

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC

[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

 CPSC 322, Lecture 1

CSP/logic: formal verification

18

 Hardware verification Software verification

 (e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:

 Encodings into propositional satisfiability (SAT)
CPSC 322, Lecture 1

CPSC 322, Lecture 5 Slide 19

(Stochastic) Local search advantage:

Online setting
• When the problem can change (particularly

important in scheduling)

• E.g., schedule for airline: thousands of flights and

thousands of personnel assignment

• Storm can render the schedule infeasible

• Goal: Repair with minimum number of changes

• This can be easily done with a local search starting

form the current schedule

• Other techniques usually:

• require more time

• might find solution requiring many more changes

SLS limitations

• Typically no guarantee to find a solution even if one exists

• SLS algorithms can sometimes stagnate

Get caught in one region of the search space and never terminate

• Very hard to analyze theoretically

• Not able to show that no solution exists

• SLS simply won’t terminate

• You don’t know whether the problem is infeasible or the

algorithm has stagnated

SLS Advantage: anytime algorithms

• When should the algorithm be stopped ?

• When a solution is found

(e.g. no constraint violations)

• Or when we are out of time: you have to act NOW

• Anytime algorithm:

maintain the node with best h found so far (the “incumbent”)

given more time, can improve its incumbent

CPSC 322, Lecture 15 Slide 22

Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

Evaluating SLS algorithms
• SLS algorithms are randomized

• The time taken until they solve a problem is a random variable

• It is entirely normal to have runtime variations of 2 orders of

magnitude in repeated runs!

E.g. 0.1 seconds in one run, 10 seconds in the next one

On the same problem instance (only difference: random seed)

Sometimes SLS algorithm doesn’t even terminate at all:

stagnation

• If an SLS algorithm sometimes stagnates, what is its mean

runtime (across many runs)?

• Infinity!

• In practice, one often counts timeouts as some fixed large value X

• Still, summary statistics, such as mean run time or median run

time, don't tell the whole story

 E.g. would penalize an algorithm that often finds a solution quickly but

sometime stagnates

CPSC 322, Lecture 5 Slide 24

Comparing Stochastic Algorithms: Challenge

• Summary statistics, such as mean run time, median run

time, and mode run time don't tell the whole story

• What is the running time for the runs for which an algorithm never
finishes (infinite? stopping time?)

100%

runtime / steps
0 10 20 30 …..

% of solved runs

CPSC 322, Lecture 5 Slide 25

First attempt….

• How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn't

halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve

the rest

C. one solves the problem in 100% of the cases, but slowly?

100%

Mean runtime / steps

of solved runs

% of solved runs

CPSC 322, Lecture 5 Slide 26

Runtime Distributions are even more

effective
Plots runtime (or number of steps) and the proportion (or

number) of the runs that are solved within that runtime.

• log scale on the x axis is commonly used

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps
 Which algorithm is most likely to

solve the problem within 7 steps?

blue green red

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps
 Which algorithm is most likely to

solve the problem within 7 steps?

red

Comparing runtime distributions
• Which algorithm has the best median performance?

• I.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

blue green red

Comparing runtime distributions
• Which algorithm has the best median performance?

• I.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

blue

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

 28% solved

after 10 steps,

then stagnate

 57% solved

after 80 steps,

then stagnate

 Slow, but does

not stagnate Crossover point:

if we run longer than 80

steps, green is the

best algorithm

 If we run less than

10 steps, red is the

best algorithm

Runtime distributions in AIspace

• Let’s look at some algorithms and their runtime

distributions:

1. Greedy Descent

2. Random Sampling

3. Random Walk

4. Greedy Descent with random walk

• Simple scheduling problem 2 in AIspace:

CPSC 322, Lecture 5 Slide 33

What are we going to look at in AIspace

When selecting a variable first
followed by a value:

• Sometimes select variable:
1. that participates in the

largest number of conflicts.

2. at random, any variable that
participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

AIspace terminology

Random sampling

Random walk

Greedy Descent

Greedy Descent Min
conflict

Greedy Descent with
random walk

Greedy Descent with
random restart …..

CPSC 322, Lecture 5 Slide 34

Stochastic Local Search

• Key Idea: combine greedily improving moves with

randomization

• As well as improving steps we can allow a “small

probability” of:

• Random steps: move to a random neighbor.

• Random restart: reassign random values to all

variables.

• Stop when

• Solution is found (in vanilla CSP …………………………)

• Run out of time (return best solution so far)

• Always keep best solution found so far

CPSC 322, Lecture 4 Slide 35

Learning Goals for today’s class

You can:

• Implement SLS with

• random steps (1-step, 2-step versions)

• random restart

• Compare SLS algorithms with runtime

distributions

CPSC 322, Lecture 15 Slide 36

Next Class

• More SLS variants

• Finish CSPs

• (if time) Start planning

Assign-2

• Will be out on Tue

• Assignments will be weighted:

A0 (12%), A1…A4 (22%) each

