Finish Search

Computer Science cpsc322, Lecture 10

(Textbook Chpt 3.6)

Sep, 26, 2010

CPSC 322, Lecture 10

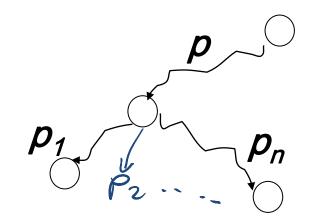
Lecture Overview

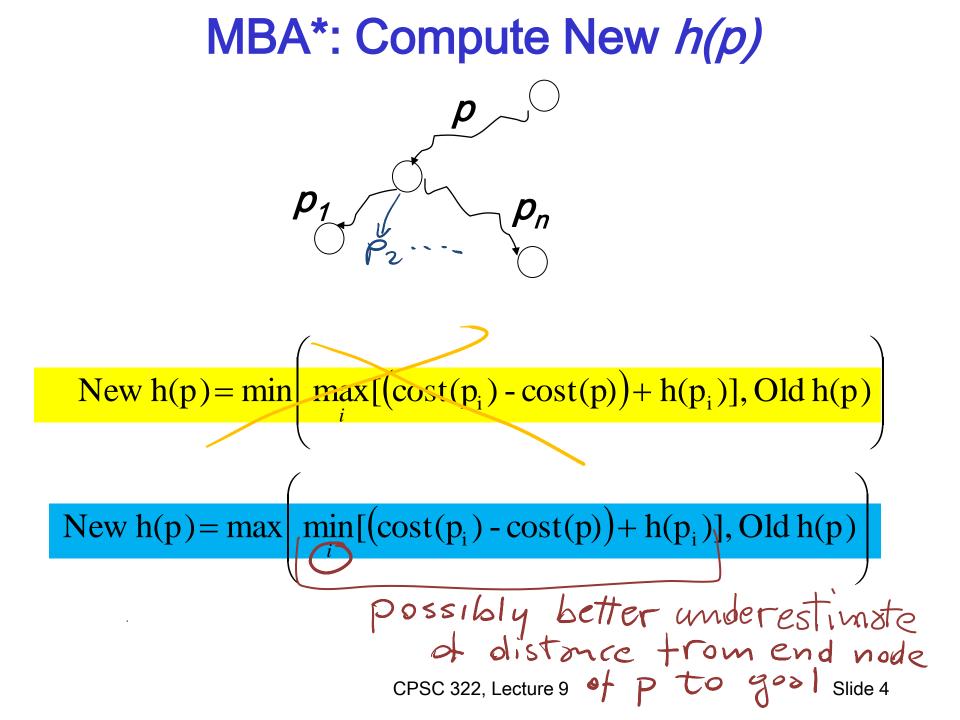
- Finish MBA*
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- Search Recap

Memory-bounded A*

- Iterative deepening A* and B & B use a tiny amount of memory (but have their own problems...)
- what if we've got more memory to use?
- keep as much of the fringe in memory as we can
- if we have to delete something:

 - ``back them up" to a common ancestor

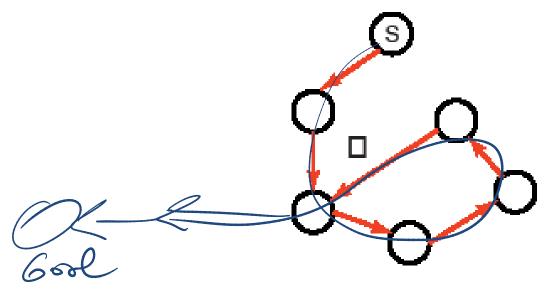




Lecture Overview

- Finish MBA*
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- Search Recap

Cycle Checking



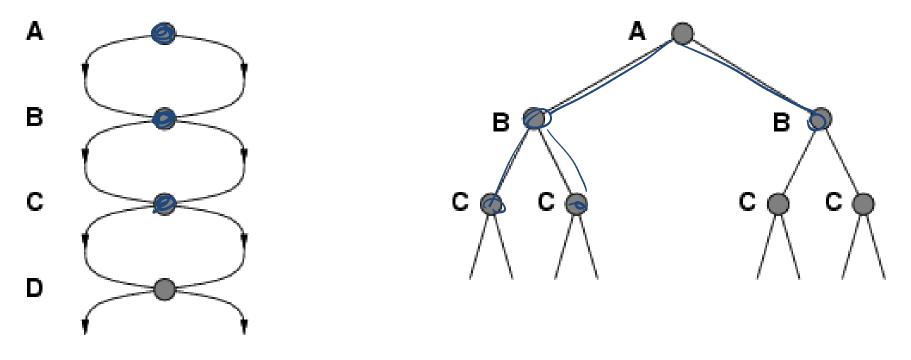
You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.

• The time is <u>line</u> in path length.

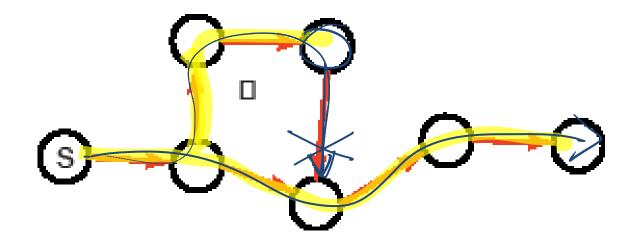
CPSC 322, Lecture 10

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear problem into an exponential one!



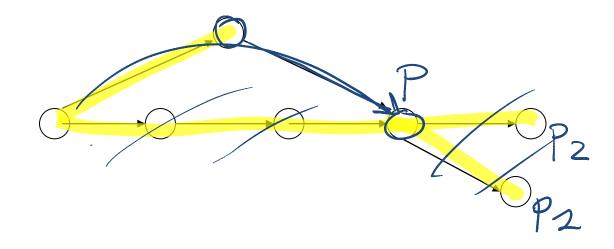
Multiple-Path Pruning



- •You can prune a path to node *n* that you have already found a path to
- (if the new path is longer more costly).

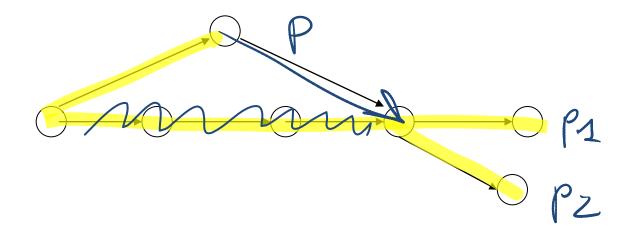
Multiple-Path Pruning & Optimal Solutions

- Problem: what if a subsequent path to *n* is shorter than the first path to *n*?
- You can remove all paths from the frontier that use the longer path. (as these can't be optimal)

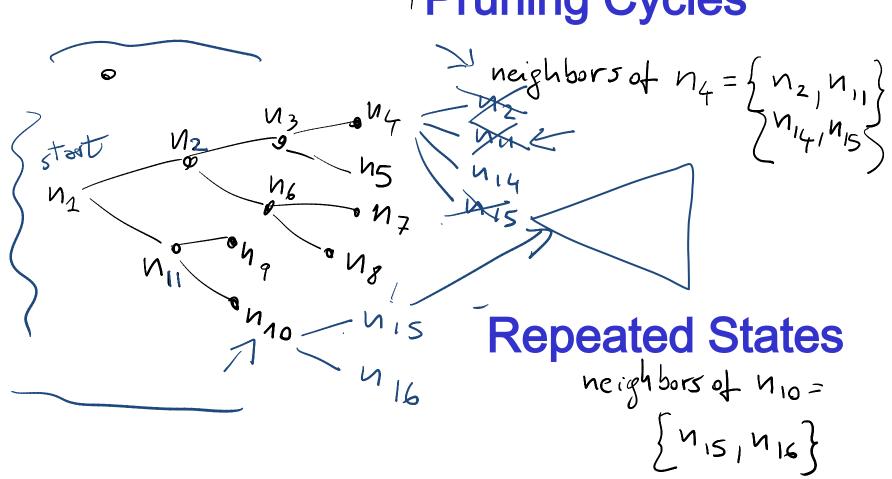


Multiple-Path Pruning & Optimal Solutions

- Problem: what if a subsequent path to *n* is shorter than the first path to *n*?
- You can change the initial segment of the paths on the frontier to use the shorter path.



Pruning Cycles



Lecture Overview

- Finish MBA*
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- Search Recap

Dynamic Programming

- Idea: for statically stored graphs, build a table of dist(n):
 - The actual distance of the shortest path from node n to a goal g
 This is the neufact

heuristic

3

- This is the perfect
- dist(g) = 0
- dist(z) = 1
- dist(c) = 3
- dist(b) = 4 6 7 🗙
- dist(k) = ?
- dist(h) = ?
- How could we implement that?

Dynamic Programming

This can be built backwards from the goal:

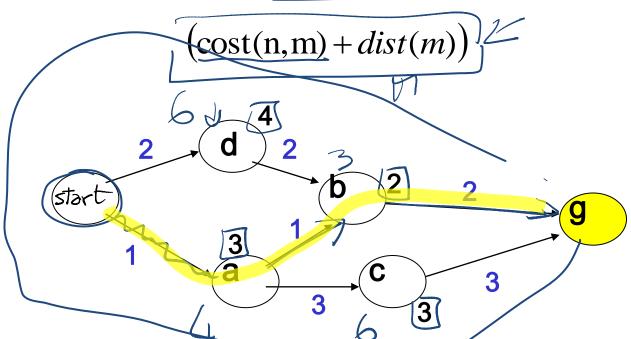
This can be built backwards from the goal:

$$\underline{dist(n)} = \begin{cases} 0 & \text{if } is _goal(n), \\ \min_{(n,m) \in A} (cost(n,m) + \overline{dist(m)}) & \text{otherwise} \end{cases}$$

$$all \text{ the neighbors } m \qquad g \qquad O \\ \text{dist}(u) \qquad g \qquad O \\ \text{dist}(b) - \min(2+0) = 2 \\ \text{dist}(b) - \min(2+0) = 3 \\ \text{dist}(c) - \min(3+0) = 3 \\ \text{dist}(a) = \min(3+3)/(4+2) = 3 \\ CPSC 322, Lecture 9 \qquad Slide 14 \end{cases}$$

Dynamic Programming

This can be used locally to determine what to do. From each node *n* go to its neighbor which minimizes



But there are at least two main problems:

- You need enough space to store the graph.
- The *dist* function needs to be recomputed for each goal

Lecture Overview

- Finish MBA*
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- Search Recap

U Recap Search

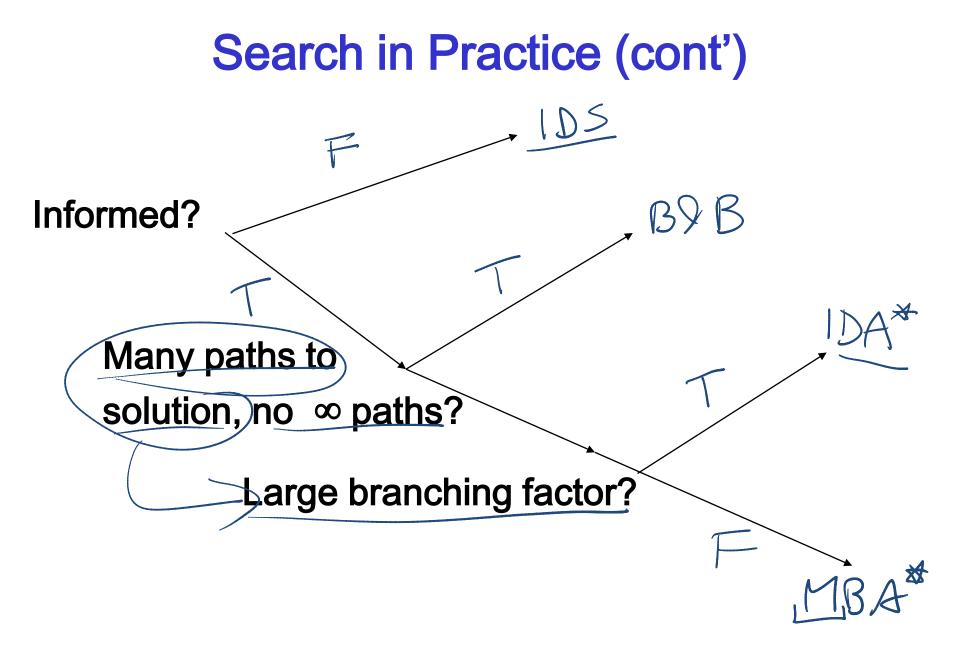
	Selection	Complete	Optimal	Time	Space
DFS	LIFO	N	Ν	$O(b^m)$,Q(mb)
BFS	FIFO	Y	Y	$O(b^m)$	$O(b^m)$
IDS(C)	LIFO	Y	Y	$O(b^m)$	O(mb)
LCFS	min cost	Y	Y	$O(b^m)$	$O(b^m)$
BFS	min	N	N	$O(b^m)$	$O(b^m)$
A*	min f=44	Y	Y	$O(b^m)$	$O(b^m)$
B&B	LIFO + } pruning	N	Y	$O(b^m)$	<i>O(mb)</i> フ
ID <u>A*</u>	LIFO	Y	Y	$O(b^m)$	O(mb)
MBA*	min f	N	Y	$O(b^m)$	$O(b^m)$

Recap Search (some qualifications)

	Complete	Optimal	Time	Space
DFS	N	Ν	$O(b^m)$	O(mb)
BFS	Y	Y	$O(b^m)$	$O(b^m)$
IDS(C)	Y	Y	$O(b^m)$	O(mb)
LCFS	Y	Y? <>>0	$O(b^m)$	$O(b^m)$
BFS	Ν	Ν	$O(b^m)$	$O(b^m)$
A*	Y V	Y?	$O(b^m)$	$O(b^m)$
B&B	N	Y?	$O(b^m)$	O(mb)
IDA*	Y	Y	$O(b^m)$	O(mb)
MBA*	N	Y	$O(b^m)$	$O(b^m)$

Search in Practice

	Complete	Optimal	Time	Space
DFS	N	Ν	$O(b^m)$	O(mb)
BFS	Y	Y	$O(b^m)$	$O(b^m)$
IDS(C)		<i>></i>	$O(b^m)$	O(mb)
LCFS	Y	Y	$O(b^m)$	$O(b^m)$
BFS	Ν	Ν	$O(b^m)$	$O(b^m)$
A*	Y	Y	$O(b^m)$	$O(b^m)$
B&B	N	Y	$O(b^m)$	O(mb)
IDA*	Y	Y	$O(b^m)$	O(mb)
MBA*	N	Y	$O(b^m)$	$O(b^m)$
BDS	Y	Y	<i>O(b^{m/2})</i>	<i>O(b^{m/2})</i>



Adversarial) Search: Chess

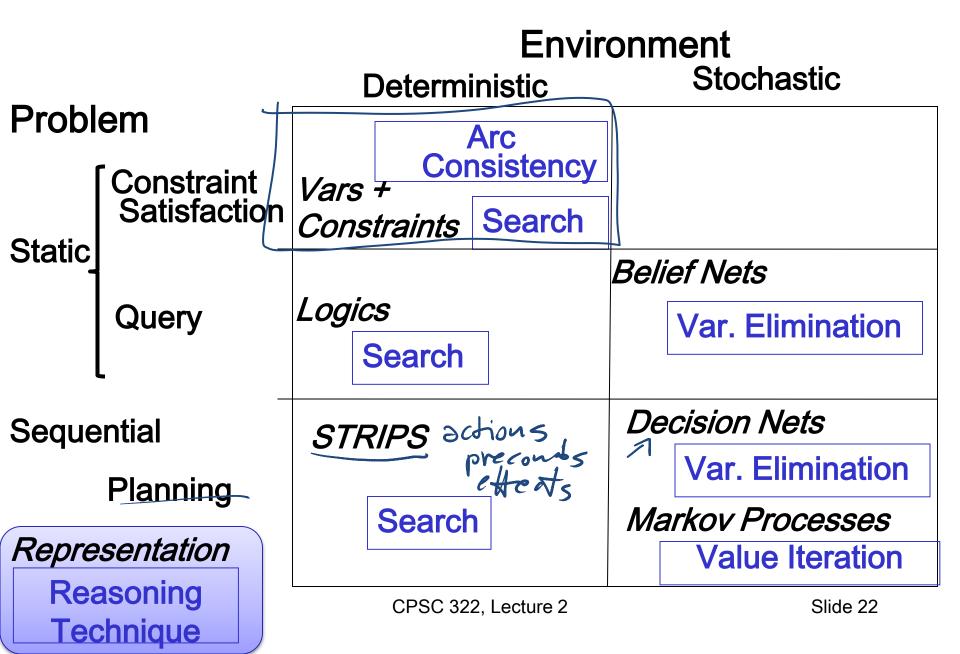
Deep Blue's Results in the second tournament:

- second tournament: won 3 games, lost 2, tied 1
- 30 CPUs + 480 chess processors
- Searched 126.000.000 nodes per sec
- Generated 30 billion positions per move reaching depth 14 routinely

(Reuters = Kyodo News)

• <u>Iterative Deepening</u> with evaluation function (similar to a heuristic) based on 8000 features (e.g., sum of worth of pieces: pawn 1, rook 5, queen 10) CPSC 322, Lecture 10 Slide 21

Modules we'll cover in this course: R&Rsys



Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):

- State
 Successor function
 Goal test
 Solution
 Heuristic function
 Planning :
 - State
 - Successor function
 - Goal test
 - Solution
 - Heuristic function

Inference

- State
- Successor function
- Goal test
- Solution
- Heuristic function

Next class

Start **Constraint Satisfaction Problems** (CSPs) Textbook 4.1-4.3

I will be away for 2-3 classes Alan Mackworth will sub for me

- Co-author of your textbook
- Pioneered work in CSP