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Lecture Overview 

 

• Solving Constraint Satisfaction Problems (CSPs) 
- Recap: Generate & Test 

- Recap: Graph search 

• Arc consistency 
- GAC algorithm 

- Complexity analysis 

- Domain splitting 
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Constraint Satisfaction Problems (CSPs): Definition 
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Definition:  
A model of a CSP is a possible world that satisfies all constraints.  

Definition:  
A constraint satisfaction problem (CSP) consists of: 

• a set of variables V 
• a domain dom(V) for each variable V V 
• a set of constraints C 

 

An example CSP: 

•  V = {V1,V2} 

–  dom(V1) = {1,2,3} 

–  dom(V2) = {1,2} 

•  C = {C1,C2,C3} 

–  C1: V2  2 

–  C2: V1 + V2  < 5 

–  C3: V1 > V2 

Possible worlds for this CSP: 
              {V1=1, V2=1} 

       {V1=1, V2=2} 

       {V1=2, V2=1} (one model) 

              {V1=2, V2=2} 

          {V1=3, V2=1} (another model) 

      {V1=3, V2=2}   

Definition:  
A possible world of a CSP is an assignment of  
values to all of its variables.  



 

• Generate and Test: 

- Generate possible worlds one at a time. 

- Test constraints for each one. 

Example: 3 variables A,B,C 

 

 

 

 

 

 

• Simple, but slow:  

- k variables, each domain size d, c constraints: O(cdk) 

 

 

Generate and Test (G&T) Algorithms 

For a in dom(A) 

 For b in dom(B) 

  For c in dom(C) 

           if {A=a, B=b, C=c} satisfies all constraints      

       return {A=a, B=b, C=c}  

 fail 
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Lecture Overview 

 

• Solving Constraint Satisfaction Problems (CSPs) 
- Recap: Generate & Test 

- Recap: Graph search 

• Arc consistency 
- GAC algorithm 

- Complexity analysis 

- Domain splitting 
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• Explore search space via DFS but evaluate each 

constraint as soon as all its variables are bound.  
 

• Any partial assignment that doesn’t satisfy the 

constraint can be pruned. 
 

• Example:  

- 3 variables A, B,C, each with domain {1,2,3,4} 

- {A = 1, B = 1} is inconsistent with constraint A  B  

regardless of the value of the other variables 

  Fail. Prune! 

 

Backtracking algorithms 
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V1 = v1 

V2 = v1 

V1 = v1 

V2 = v2  

V1 = v1 

V2 = vk  

CSP as Graph Searching 

V1 = v1 

V2 = v1 

V3 = v2 

V1 = v1 

V2 = v1 

V3 = v1 

{} 

V1 = v1 V1 = vk 

Check unary constraints on V1 

If not satisfied  PRUNE 

Check constraints on V1 

and V2 If not satisfied   

               PRUNE 



Standard Search vs. Specific R&R systems 
• Constraint Satisfaction (Problems): 

– State: assignments of values to a subset of the variables 

– Successor function: assign values to a ‘free’ variable 

– Goal test: all variables assigned a value and all constraints satisfied? 

– Solution: possible world that satisfies the constraints 

– Heuristic function: none (all solutions at the same distance from start) 

• Planning :  

– State 

– Successor function 

– Goal test 

– Solution 

– Heuristic function 

• Inference 

– State 

– Successor function 

– Goal test 

– Solution 

– Heuristic function 
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V1 = v1 

V2 = v1 

V1 = v1 

V2 = v2  

V1 = v1 

V2 = vk  

CSP as Graph Searching 

V1 = v1 

V2 = v1 

V3 = v2 

V1 = v1 

V2 = v1 

V3 = v1 

{} 

V1 = v1 V1 = vk 

Check unary constraints on V1 

If not satisfied  PRUNE 

Check constraints on V1 

and V2 If not satisfied   

               PRUNE 

Problem? 

Performance heavily depends  

on the order in which 

variables are considered. 

E.g. only 2 constraints: 

Vn=Vn-1 and Vn Vn-1 

 



CSP as a Search Problem: another formulation  

• States: partial assignment of values to variables 

• Start state: empty assignment 

• Successor function: states with the next variable assigned 

– Assign any previously unassigned variable 

– A state assigns values to some subset of variables: 

• E.g. {V7 = v1, V2 = v1, V15 = v1} 

• Neighbors of node {V7 = v1, V2 = v1, V15 = v1}:  

nodes   {V7 = v1, V2 = v1, V15 = v1, Vx = y}  

for some variable Vx V \ {V7, V2, V15} and all values ydom(Vx) 
 

• Goal state: complete assignments of values to variables 

that satisfy all constraints 

– That is, models 

• Solution: assignment (the path doesn’t matter) 
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CSP as Graph Searching 
• 3 Variables: A,B,C. All with domains = {1,2,3,4} 

• Constraints: A<B, B<C 



 

• Backtracking relies on one or more heuristics to select 

which variables to consider next. 

- E.g. variable involved in the largest number of constraints: 

 “If you are going to fail on this branch, fail early!” 

- Can also be smart about which values to consider first 

• This is a different use of the word ‘heuristic’! 

- Still true in this context 

• Can be computed cheaply during the search 

• Provides guidance to the search algorithm 

- But not true anymore in this context 

• ‘Estimate of the distance to the goal’ 

 

• Both meanings are used frequently in the AI literature. 
• ‘heuristic’ means ‘serves to discover’: goal-oriented. 
• Does not mean ‘unreliable’! 

Selecting variables in a smart way 
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Learning Goals for solving CSPs so far 

 

• Verify whether a possible world satisfies a set of constraints  

i.e. whether it is a model - a solution. 

 

• Implement the Generate-and-Test Algorithm.  

Explain its disadvantages. 

 

• Solve a CSP by search  (specify neighbors, states, start state, goal 

state). Compare strategies for CSP search. Implement pruning for 

DFS search in a CSP.   
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Lecture Overview 
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- Recap: Generate & Test 

- Recap: Graph search 
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- Domain splitting 
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Can we do better than Search? 

Key idea  

• prune the domains as much as possible before 

searching for a solution. 

 

 

 

 
 

• Example: dom(V2) = {1, 2, 3, 4}. V2  2 

• Variable V2 is not domain consistent.  

- It is domain consistent once we remove 2 from its domain. 

• Trivial for unary constraints. Trickier for k-ary ones. 

 

 

Def.: A variable is domain consistent if no value of its 

domain is ruled impossible by any unary constraints. 
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Graph Searching Repeats Work 
• 3 Variables: A,B,C. All with domains = {1,2,3,4} 

• Constraints: A<B, B<C 

• A ≠ 4 is rediscovered 3 times. So is C ≠ 1 

- Solution: remove values from A’s domain and C’s, once and for all 



 

 

 

 

 

 

 

• Example:  

- Two variables X and Y 

- One constraint: X<Y 

 

 

 

 

 

 

 X Y X< Y 
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Def. A constraint network is defined by a graph, with 

- one node for every variable (drawn as circle) 

- one node for every constraint (drawn as rectangle) 

- undirected edges running between variable nodes and 

constraint nodes whenever a given variable is involved in a 

given constraint. 

 

Constraint network: definition 



Constraint network: definition 

 

 

 

 

 
 

• Whiteboard example: 3 Variables A,B,C 

– 3 Constraints: A<B, B<C, A+3=C 

– 6 edges/arcs in the constraint network:  

• 〈A,A<B〉 , 〈B,A<B〉  

• 〈B,B<C〉 , 〈C,B<C〉 

• 〈A, A+3=C〉 , 〈C,A+3=C〉 
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Def. A constraint network is defined by a graph, with 

- one node for every variable (drawn as circle) 

- one node for every constraint (drawn as rectangle) 

- Edges/arcs running between variable nodes and constraint 

nodes whenever a given variable is involved in a given 

constraint. 

 



A more complicated example 

• How many variables are there in this constraint network? 

 

 

 
 

– Variables are  

drawn as circles 
 

• How many  

constraints  

are there? 

 

 

 

– Constraints are drawn as rectangles 

 

19 

14 

5 

9 

6 

14 

5 

9 
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Arc Consistency 

Definition: 

An arc <x, r(x,y)> is arc consistent if for each value x in 

dom(X) there is some value y in dom(Y) such that r(x,y) is 

satisfied. 

A network is arc consistent if all its arcs are arc consistent. 

 

T F T F 
 

 2,5,7 2,3,13 

A B 

A< B/2 

Is this arc 

consistent? 

 

 1,2,3 2,3 
A B 

A< B 

Not arc consistent:  

No value in domain of B 

that satisfies A<B if A=3 

Arc consistent: Both 

B=2 and B=3 have 

ok values for A (e.g. 

A=1) 
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How can we enforce Arc Consistency? 

 

 

• If an arc <X, r(X,Y)> is not arc consistent 

- Delete all values x in dom(X) for which there is no corresponding 

value in dom(Y) 

- This deletion makes the arc <X, r(X,Y)> arc consistent. 

- This removal can never rule out any models/solutions 

• Why? 

 

 

 
 

    Run this example: http://cs.ubc.ca/~mack/CS322/AIspace/simple-network.xml 

          in                             (   (Save to a local file and open file.) 

 

 

 

 

 

 2,3,4 1,2,3 
X Y 

X< Y 
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Lecture Overview 

 

• Solving Constraint Satisfaction Problems (CSPs) 
- Recap: Generate & Test 

- Recap: Graph search 

• Arc consistency 
- GAC algorithm 

- Complexity analysis 

- Domain splitting 
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Arc Consistency Algorithm:  

high level strategy 

• Consider the arcs in turn, making each arc consistent 

• Reconsider arcs that could be made inconsistent 
again by this pruning of the domains 

• Eventually reach a ‘fixed point’: all arcs consistent 

• Run ‘simple problem 1’ in AIspace for an example: 
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Which arcs need to be reconsidered? 
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every arc Z,c' where c’  c  

involves Z and X: Z1 c1 

Z2 c2 

Z3 c3 

Y c 

T 

H 

E 

S 

E 

X 

A c4 

• When we reduce the domain of a variable X  to make an arc 

X,c  arc consistent, which arcs do we need to reconsider? 

 

 

 

 

 

 
 

 

 

• You do not need to reconsider other arcs 

- If arc Y,c was arc consistent before, it will still be arc consistent 

- If an arc X,c' was arc consistent before, it will still be arc consistent 

- Nothing changes for arcs of constraints not involving X 



• Consider the arcs in turn, making each arc consistent 

• Reconsider arcs that could be made inconsistent 
again by this pruning 
 

• DO trace on ‘simple problem 1’ and on  

                ‘scheduling problem 1’, trying to predict  

-   which arcs are not consistent and  

-   which arcs need to be reconsidered after each removal 

               in 
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Which arcs need to be reconsidered? 



Arc consistency algorithm (for binary constraints) 
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   Procedure GAC(V,dom,C)  

             Inputs 

                       V: a set of variables  

                       dom: a function such that dom(X) is the domain of variable X  

                       C: set of constraints to be satisfied  

             Output 

                       arc-consistent domains for each variable  

             Local 

                       DX is a set of values for each variable X  

                       TDA is a set of arcs 
 

1:           for each variable X do 

2:                     DX ←dom(X)  

3:           TDA ←{〈X,c〉| X ∈ V, c ∈ C  and X ∈ scope(c)}  

          

4:           while (TDA  {})  

5:                     select 〈X,c〉 ∈TDA 

6:                     TDA ←TDA  \ {〈X,c〉} 

7:                     NDX ←{x| x ∈ DX and  y ∈ DY s.t. (x, y) satisfies c} 

8:                     if (NDX  DX) then  

9:                               TDA ←TDA  ∪ { 〈Z,c'〉 | X ∈ scope(c'), c'  c, Z ∈ scope(c') \ {X} }  

10:                             DX ←NDX  

                      

11:           return {DX| X  is a variable}  

Scope of constraint c is 

the set of variables 

involved in that 

constraint 

NDX: values x for X for 

which there a value for y 

supporting x 

X’s domain changed: 

 arcs (Z,c’) for 

variables Z sharing a  

constraint c’ with X 

could become 

inconsistent 

TDA:  

ToDoArcs, 

blue arcs 

in AIspace 



Arc Consistency Algorithm: Interpreting Outcomes 

• Three possible outcomes  

(when all arcs are arc consistent): 

– Each domain has a single value, e.g. 

http://www.cs.ubc.ca/~mack/CS322/AIspace/simple-network.xml 

(Download the file and load it as a local file in AIspace) 

•We have a (unique) solution.  
 

– At least one domain is empty, e.g. 

http://www.cs.ubc.ca/~mack/CS322/AIspace/simple-infeasible.xml 

•No solution! All values are ruled out for this variable. 
 

– Some domains have more than one value, e.g. 

built-in example “simple problem 2” 

•There may be a solution, multiple ones, or none 

•Need to solve this new CSP (usually simpler) problem:  

    same constraints, domains have been reduced 

 



Lecture Overview 

 

• Solving Constraint Satisfaction Problems (CSPs) 
- Recap: Generate & Test 

- Recap: Graph search 

• Arc consistency 
- GAC algorithm 

- Complexity analysis 

- Domain splitting 
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• How often will we prune the domain 
of variable V? O(d) times 

• How many arcs will be put on the  
ToDoArc list when pruning domain of variable V? 

- O(degree of variable V) 

- In total, across all variables: sum of degrees of all variables =  

    2*number of constraints, i.e. 2*c 

• Together: we will only put O(dc) arcs on the ToDoArc list 

• Checking consistency is O(d2) for each of them 

• Overall complexity: O(cd3) 

• Compare to O(dN) of DFS!! Arc consistency is MUCH faster 

Arc Consistency Algorithm: Complexity 

• Worst-case complexity of arc consistency procedure on a 
problem with N variables  
– let d be the max size of a variable domain 

– let c be the number of constraints 



Lecture Overview 
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- Recap: Generate & Test 

- Recap: Graph search 
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- Domain splitting 
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Can we have an arc consistent network 

with non-empty domains  

that has no solution? 
YES 

NO 

• Example: vars A, B, C with domain {1, 2} and 

constraints A ≠ B, B ≠ C, A ≠ C 

 

• Or see AIspace CSP applet Simple Problem 2 



Domain splitting (or case analysis) 

• Arc consistency ends: Some domains have more than 

one value  may or may not have a solution 

A. Apply Depth-First Search with Pruning or 

B. Split the problem in a number of disjoint cases: 

 

CSP with dom(X) = {x1, x2, x3, x4} becomes 

 

CSP1 with dom(X) = {x1, x2} and  

CSP2 with dom(X) = {x3, x4} 

 

• Solution to CSP is the union of solutions to CSPi 
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Domain splitting 

• Each smaller CSP is easier to solve 

– Arc consistency might already solve it 

• For each subCSP, which arcs have to be on the ToDoArcs 

list when we get the subCSP by splitting the domain of X? 

 

 
arcs <Z, r(Z,X)> 

arcs <Z, r(Z,X)> and <X, r(Z,X)>  

      All arcs 

A1 c1 

A2 c2 

A3 c3 

Y c 

T 

H 

E 

S 

E 

X 

A c4 

T 

H 

I

S 



 

• Trace it on “simple problem 2” 

 

  

 

Domain splitting in action 



If domains with multiple values 

      

         Split on one  

Searching by domain splitting 
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     How many CSPs do we need to keep around at a time?  

With depth m and 2 children at each split: O(2m). It’s a DFS. 

 

CSP, apply AC 

 

CSP1, apply AC CSP2, apply AC 

If domains with multiple values 

     Split on one  

If domains with multiple 

values…..Split on one  



Learning Goals for today’s class 

• Define/read/write/trace/debug the arc consistency 

algorithm. Compute its complexity and assess its 

possible outcomes  
 

• Define/read/write/trace/debug domain splitting and its 

integration with arc consistency 
 

 
 

• Coming up: local search, Section 4.8 

 

 


