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Lecture Overview 

 

• Constraint Satisfaction Problems (CSPs):  
Definition and Recap 

 

• CSPs: Motivation 

 

• Solving CSPs 
- Generate & Test 

- Graph search 
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Standard Search vs. CSP 

•  First studied general state space search in isolation 

– Standard search problem: search in a state space  

 

•  State is a “black box” - any arbitrary data structure that   

 supports three problem-specific routines:  

– goal test: goal(state) 

– finding successor nodes: neighbors(state) 

– if applicable, heuristic evaluation function: h(state) 

 

•  We’ll see more specialized versions of search for various 

 problems 
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• Constraint Satisfaction Problems: 

– State 

– Successor function 

– Goal test 

– Solution 

– Heuristic function 

• Planning :  

– State 

– Successor function 

– Goal test 

– Solution 

– Heuristic function 

• Inference 

– State 

– Successor function 

– Goal test 

– Solution 

– Heuristic function 

 

 

Search in Specific R&R Systems 



Constraint Satisfaction Problems (CSPs): Definition 
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Definition:  
A constraint satisfaction problem (CSP) consists of: 

• a set of variables V 
• a domain dom(V) for each variable V V 
• a set of constraints C 

 

Another example: 

•  V = {V1,V2} 

–  dom(V1) = {1,2,3} 

–  dom(V2) = {1,2} 

•  C = {C1,C2,C3} 

–  C1: V2  2 

–  C2: V1 + V2  < 5 

–  C3: V1 > V2 

Simple example: 

•  V = {V1} 

–  dom(V1) = {1,2,3,4} 

•  C = {C1,C2} 

–  C1: V1  2 

–  C2: V1 > 1 



Constraint Satisfaction Problems (CSPs): Definition 
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Definition:  
A model of a CSP is an assignment of values to all of 
its variables that satisfies all of its constraints.  

Simple example: 

•  V = {V1} 

–  dom(V1) = {1,2,3,4} 

•  C = {C1,C2} 

–  C1: V1  2 

–  C2: V1 > 1 

All models for this CSP: 

  {V1 = 3} 

  {V1 = 4} 

Definition:  
A constraint satisfaction problem (CSP) consists of: 

• a set of variables V 
• a domain dom(V) for each variable V V 
• a set of constraints C 

 



Constraint Satisfaction Problems (CSPs): Definition 
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Definition:  
A model of a CSP is an assignment of values to all of 
its variables that satisfies all of its constraints.  

Which are models for this CSP? 

  

Another example: 

•  V = {V1,V2} 

–  dom(V1) = {1,2,3} 

–  dom(V2) = {1,2} 

•  C = {C1,C2,C3} 

–  C1: V2  2 

–  C2: V1 + V2  < 5 

–  C3: V1 > V2 

{V1=3, V2=2} 

{V1=1, V2=1} 

{V1=3, V2=1} 

{V1=2, V2=1} 

Definition:  
A constraint satisfaction problem (CSP) consists of: 

• a set of variables V 
• a domain dom(V) for each variable V V 
• a set of constraints C 

 



Possible Worlds 
 

 

 

 

 

 

 

i.e.  a model is a possible world that satisfies all constraints 
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Definition:  
A possible world of a CSP is an assignment of  
values to all of its variables.  

Definition:  
A model of a CSP is an assignment of values to all of 
its variables that satisfies all of its constraints.  

Another example: 

•  V = {V1,V2} 

–  dom(V1) = {1,2,3} 

–  dom(V2) = {1,2} 

•  C = {C1,C2,C3} 

–  C1: V2  2 

–  C2: V1 + V2  < 5 

–  C3: V1 > V2 

Possible worlds for this CSP: 
              {V1=1, V2=1} 

        {V1=1, V2=2} 

        {V1=2, V2=1} (a model) 

              {V1=2, V2=2} 

          {V1=3, V2=1} (a model) 

              {V1=3, V2=2}   



Constraints 

• Constraints are restrictions on the values that one or more 

variables can take 

– Unary constraint: restriction involving a single variable 

• E.g.: V2  2 

– k-ary constraint: restriction involving k different variables 

• E.g. binary (k=2):  V1 + V2  < 5 

• E.g. 3-ary:  V1 + V2 + V4 < 5 

• We will mostly deal with binary constraints 

– Constraints can be specified by  

1. listing all combinations of valid domain values for the variables  

participating in the constraint 

– E.g. for constraint V1 > V2  
and dom(V1) = {1,2,3} and  

dom(V2) = {1,2}: 

 

2. giving a function (predicate) that returns true if given values  

for each variable which satisfy the constraint else false: V1 > V2 
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V1 V2 

2 1 

3 1 

3 2 



Constraints 
 

• A possible world satisfies a set of constraints  

– if the values for the variables involved in each constraint are 

consistent with that constraint 

1. They are elements of the list of valid domain values 

2. Function returns true for those values 

 

 

 

– Examples 

• {V1=1, V2=1} (does not satisfy above constraint) 

• {V1=3, V2=1} (satisfies above constraint) 
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V1 V2 

2 1 

3 1 

3 2 



Scope of a constraint 
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• Examples: 

– V2  2 has scope {V2} 

– V1 > V2 has scope {V1,V2} 

– V1 + V2 + V4 < 5 has scope {V1,V2,V4} 

 

• How many variables are in the scope of a k-ary constraint ? 

    k variables 
 

Definition:  
The scope of a constraint is the set of variables that 
are involved in the constraint 



 

Finite Constraint Satisfaction 

Problem: Definition 
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Definition:  
A finite constraint satisfaction problem (FCSP) is a CSP 
with a finite set of variables and a finite domain for 
each variable. 

We will only study finite CSPs here but many of the  

techniques carry over to countably infinite and continuous 

domains. We use CSP here to refer to FCSP. 

 

   The scope of each constraint is automatically finite since it 

is a subset of the finite set of variables. 



Examples: variables, domains, constraints 

•  Crossword Puzzle: 

– variables are words that have to be filled in 

– domains are English words of correct length 

– (binary) constraints: words have the same  

 letters at cells where they intersect 

 

•  Crossword 2: 

– variables are cells (individual squares) 

– domains are letters of the alphabet 

– k-ary constraints: sequences of letters form valid English words  

 (k= 2,3,4,5,6,7,8,9) 
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Examples: variables, domains, constraints 

 

 

 

 

 

•  Sudoku 

– variables are cells 

– domain of each variable is {1,2,3,4,5,6,7,8,9} 

– constraints: rows, columns, boxes contain all different numbers 

• How many possible worlds are there? (say, 53 empty cells) 

 
 

• How many models are there in a typical Sudoku? 
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53*9 953 539 

About 253 953 1 



Examples: variables, domains, constraints 

•  Scheduling Problem: 

– variables are different tasks that need to be scheduled  

(e.g., course in a university; job in a machine shop) 

– domains are the different combinations of times and locations for 

each task (e.g., time/room for course; time/machine for job) 

– constraints: tasks can't be scheduled in the same location at the 

same time; certain tasks can't be scheduled in different locations at 

the same time; some tasks must come earlier than others; etc. 

 

•  n-Queens problem 

– variable: location of a queen on a chess board 

• there are n of them in total, hence the name 

– domains: grid coordinates 

– constraints: no queen can attack another 
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Constraint Satisfaction Problems: Variants 

• We may want to solve the following problems with a CSP: 

– determine whether or not a model exists 

– find a model 

– find all of the models 

– count the number of models 

– find the best model, given some measure of model quality 

• this is now an optimization problem 

– determine whether some property of the variables holds in all 

models 
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Solving Constraint Satisfaction Problems 

 

• Even the simplest problem of determining whether or not a 

model exists in a general CSP with finite domains is NP-

hard 

– There is no known algorithm with worst case polynomial runtime. 

– We can't hope to find an algorithm that is polynomial for all CSPs. 

 

• However, we can try to: 

– find efficient (polynomial) consistency algorithms that reduce the 

size of the search space 

– identify special cases for which algorithms are efficient  

– work on approximation algorithms that can find good solutions 

quickly, even though they may offer no theoretical guarantees 

– find algorithms that are fast on typical (not worst case) cases 
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Lecture Overview 

 

• Constraint Satisfaction Problems (CSPs):  
Definition and Recap 

 

• Constraint Satisfaction Problems (CSPs): Motivation 

 

• Solving Constraint Satisfaction Problems (CSPs) 
- Generate & Test 

- Graph search 
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CSP/logic: formal verification 

 

 

 

 

 

 

    Hardware verification          Software verification 

            (e.g., IBM)            (small to medium programs) 
 

Most progress in the last 10 years based on: 

    Encodings into propositional satisfiability (SAT) 
20 



The Propositional Satisfiability Problem (SAT) 

• Formula in propositional logic 

–  i.e. it only contains propositional (Boolean) variables 

–  Shorthand notation: x for X=true, and x for X=false 

–  Literal: x, x  
 

• In so-called conjunctive normal form (CNF) 

– Conjunction of clauses (disjunctions of literals) 

– E.g., F = (x1  x2  x3)  (x1  x2  x3)  (x1  x2  x3)  
 

– Let’s write F as a CSP: 

• 3 variables: X1, X2, X3  

• Domains: for all variables {true, false} 

• Constraints (clauses): 

(x1  x2  x3) 

(x1  x2  x3)  

(x1  x2  x3) 

• One of the models: X1 = true, X2 = false,  X3 = true 
21 



Importance of SAT 

• Similar problems as in CSPs 

– Decide whether F has a model 

– Find a model of F 
 

• First problem shown to be NP-hard problem (3-SAT) 

– One of the most important problems in theoretical computer 

science 

• Is there an efficient (i.e. worst-case polynomial) algorithm for SAT? 

– I.e., is NP = P? 

• SAT is a deceptively simple problem! 

• Important in practice: encodings of formal verification 

problems 

– Software verification: finding bugs in Windows etc. 

– Hardware verification: verify computer chips (IBM, Intel big players) 
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SAT Solvers 

• Building algorithms and software that perform well in 

practice 

– On the type of instances they face 

• Software and hardware verification instances 

• 100,000s of variables, millions of constraints 

• Runtime: seconds! 

– But: there are classes of instances where current algorithms fail 

• International SAT competition (http://www.satcompetition.org/) 

– About 40 solvers from around the world compete, bi-yearly 

– Best solver in 2007 and 2009: 
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         SATzilla: a SAT solver monster 
                (combines many other SAT solvers) 

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown 

                                (all from UBC) 

 



Lecture Overview 

 

• Constraint Satisfaction Problems (CSPs):  
Definition and Recap 

 

• Constraint Satisfaction Problems (CSPs): Motivation 

 

• Solving Constraint Satisfaction Problems (CSPs) 
- Generate & Test 

- Graph search 
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• Systematically check all possible worlds 

- Possible worlds: cross product of domains 

dom(V1)  dom(V2)  ...  dom(Vn)  

- # possible worlds =  

   |dom(V1)|  |dom(V2)|  ...  |dom(Vn)|  

• Generate and Test: 

- Generate possible worlds one at a time 

- Test constraints for each one. 

Example: 3 variables A,B,C 

Generate and Test (GT) Algorithms 

For a in dom(A) 

 For b in dom(B) 

  For c in dom(C) 

           if {A=a, B=b, C=c} satisfies all constraints      

       return {A=a, B=b, C=c}  %This possible world is a model 

 fail 

 

 



• If there are k variables, each with domain size d, and 

there are c constraints, the (worst-case time) 

complexity of Generate & Test is 

 

 

- There are dk  possible worlds 

- For each one need to check c constraints 

 

Generate and Test (GT) Algorithms 

O(dck) O(ckd) O(cdk) O(ckd) 
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Lecture Overview 

 

• Constraint Satisfaction Problems (CSPs):  
Definition and Recap 

 

• Constraint Satisfaction Problems (CSPs): Motivation 
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- Generate & Test 
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CSP as a Search Problem: one formulation  

• States: partial assignment of values to variables 

• Start state: empty assignment 

• Successor function: states with the next variable assigned 

– E.g., follow a total order of the variables V1, …, Vn 

– A state assigns values to the first k variables: 

• {V1 = v1,…,Vk = vk } 

• Neighbors of node {V1 = v1,…,Vk = vk }:  

nodes   {V1 = v1,…,Vk = vk, Vk+1 = x} for each x  dom(Vk+1) 
 

• Goal state: complete assignments of values to variables 

that satisfy all constraints 

– That is, models  

– Solution: assignment {V1 = v1,…,Vn = vn } (the path doesn’t matter) 
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Which search algorithm would be most 

appropriate for this formulation of CSP? 

None of the above 

Least Cost First Search 

Depth First Search  

A * 



Relationship To Search 

• The path to a goal isn’t important, only the solution is 

 

• Heuristic function: “none” 

- All goals are at the same depth 
 

• CSP problems can be huge 

- Thousands of variables 

• Exponentially more search states 

- Exhaustive search is typically infeasible 
 

• Many algorithms exploit the structure provided by the 

goal  set of constraints, *not* black box 



 

• Explore search space via DFS but evaluate each 

constraint as soon as all its variables are bound.  
 

• Any partial assignment that doesn’t satisfy the 

constraint can be pruned. 
 

• Example:  

- 3 variables A, B, C each with domain {1,2,3,4} 

- {A = 1, B = 1} is inconsistent with constraint A  B  

regardless of the value of the other variables 

  Fail! Prune! 

 

Backtracking algorithms 



V1 = v1 

V2 = v1 

V1 = v1 

V2 = v2  

V1 = v1 

V2 = vk  

CSP as Graph Searching 

V1 = v1 

V2 = v1 

V3 = v2 

V1 = v1 

V2 = v1 

V3 = v1 

{} 

V1 = v1 V1 = vk 

Check unary constraints on V1 

If not satisfied = PRUNE 

Check constraints on V1 

and V2 If not satisfied = 

PRUNE 



V1 = v1 

V2 = v1 

V1 = v1 

V2 = v2  

V1 = v1 

V2 = vk  

CSP as Graph Searching 

V1 = v1 

V2 = v1 

V3 = v2 

V1 = v1 

V2 = v1 

V3 = v1 

{} 

V1 = v1 V1 = vk 

Check unary constraints on V1 

If not satisfied = PRUNE 

Check constraints on V1 

and V2 If not satisfied = 

PRUNE 

Problem? 

Performance heavily depends  

on the order in which 

variables are considered. 

E.g. only 2 constraints: 

Vn=Vn-1 and Vn Vn-1 

 



CSP as a Search Problem: another formulation  

• States: partial assignment of values to variables 

• Start state: empty assignment 

• Successor function: states with the next variable assigned 

– Assign any previously unassigned variable 

– A state assigns values to some subset of variables: 

• E.g. {V7 = v1, V2 = v1, V15 = v1} 

• Neighbors of node {V7 = v1, V2 = v1, V15 = v1}:  

nodes   {V7 = v1, V2 = v1, V15 = v1, Vx = y}  

for any variable Vx V \ {V7, V2, V15} and all values ydom(Vx) 

• No fixed variable ordering for this search variant 

• Goal state: complete assignments of values to variables 

that satisfy all constraints 

– That is, models 

• Solution: assignment (the path doesn’t matter) 
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CSP Solving as Graph Searching 
• 3 Variables: A,B,C. All with domains = {1,2,3,4} 

• Constraints: A<B, B<C 



 

• Backtracking relies on one or more heuristics to select 

which variable to consider next. 

- E.g, variable involved in the largest number of constraints: 

 “If you are going to fail on this branch, fail early!” 

- Can also be smart about which values to consider first 

• This is a different use of the word ‘heuristic’! 

- Still true in this context 

• Can be computed cheaply during the search 

• Provides guidance to the search algorithm 

- But not true anymore in this context 

• ‘Estimate of the distance to the goal’ 

 

• Both meanings are used frequently in the AI literature. 
• ‘heuristic’ means ‘serves to discover’: goal-oriented. 
• Does not mean ‘unreliable’! 

Selecting variables in a smart way 
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Standard Search vs. Specific R&R systems 
• Constraint Satisfaction (Problems): 

– State: assignments of values to a subset of the variables 

– Successor function: assign values to a “free” variable 

– Goal test: all variables assigned a value and all constraints satisfied? 

– Solution: possible world that satisfies the constraints 

– Heuristic function: none (all solutions at the same distance from start) 

• Planning :  

– State 

– Successor function 

– Goal test 

– Solution 

– Heuristic function 

• Inference 

– State 

– Successor function 

– Goal test 

– Solution 

– Heuristic function 

 



Learning Goals for today’s class 

• Define possible worlds in term of variables and their domains 

– Compute number of possible worlds on real examples  

• Specify constraints to represent real world problems 
differentiating between: 
– Unary and k-ary constraints  

– List vs. function format 

• Verify whether a possible world satisfies a set of constraints 
(i.e., whether it is a model, a solution) 

• Implement  the Generate-and-Test Algorithm. Explain its 

disadvantages. 

• Solve a CSP by search  (specify neighbors, states, start state, goal 

state). Compare strategies for CSP search. Implement pruning for 

DFS search in a CSP.   
 

• Coming up: Arc consistency and domain splitting 

– Read Sections 4.5-4.6 

• Assignment 1 is due this Friday 38 


