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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions :More 

compact Distributions and Structures 

 

 



Recap Joint Distribution 

•3 binary random variables: P(H,S,F) 

– H   dom(H)={h, h}    has heart disease,  does not have… 

– S   dom(S)={s, s}    smokes,  does not smoke 

– F   dom(F)={f, f}    high fat diet,  low fat diet 
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Recap Joint Distribution 

•3 binary random variables: P(H,S,F) 
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Recap Marginalization 

P(H,S)? 

P(H)? 
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Recap Conditional Probability 

P(H,S) P(H) 

P(S) 
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Recap Conditional Probability (cont.) 

)(

),(
)|(

HP

HSP
HSP 

Two key points we covered in previous lecture 

• We derived this equality from a possible world 

semantics of probability 

• It is not a probability distributions but….. 

• One for each configuration of the conditioning var(s) 
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Product Rule 

• Definition of conditional probability: 

– P(X1 | X2) = P(X1 , X2) / P(X2) 

• Product rule gives an alternative, more intuitive  
formulation: 

– P(X1 , X2) = P(X2) P(X1 | X2) = P(X1) P(X2 | X1) 
 

• Product rule general form: 

P(X1, …,Xn) = 

   = P(X1,...,Xt) P(Xt+1…. Xn | X1,...,Xt) 
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Chain Rule 

• Product rule general form: 

P(X1, …,Xn) = 

   = P(X1,...,Xt) P(Xt+1…. Xn | X1,...,Xt) 
 

• Chain rule is derived by successive application of 
product rule: 

P(X1, … Xn-1 , Xn) = 

   = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1) 

   = P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1) = …. 

   = P(X1) P(X2 | X1) … P(Xn-1 | X1,...,Xn-2) P(Xn | X1,.,Xn-1)  

                   = ∏n
i= 1 P(Xi | X1, … ,Xi-1) 
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Chain Rule: Example 

P(cavity , toothache, catch) = 

 

P(toothache, catch, cavity) = 
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Using conditional probability 
• Often you have causal knowledge (forward from cause to evidence): 

– For example 

P(symptom | disease) 

P(light is off | status of switches and switch positions) 

P(alarm | fire) 

– In general: P(evidence e | hypothesis h) 

 

• ... and you want to do evidential reasoning (backwards from evidence 

to cause): 

– For example 

P(disease | symptom) 

P(status of switches | light is off and switch positions) 

P(fire | alarm) 

– In general: P(hypothesis h | evidence e) 
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Bayes Rule                          

 

 

Bayes Rule 
• By definition, we know that : 

 

 

• We can rearrange terms to write 

 

 

• But 

 

 

• From (1) (2) and (3) we can derive 

•            

)(

)(
)|(

eP

ehP
ehP




(1)         )()|()( ePehPehP 

(3)       )()( hePehP 

      
 )(

)()|(
)|(

eP

hPheP
ehP 

)(

)(
)|(

hP

heP
heP




(2)         )()|()( hPhePheP 

12 
CPSC 322, Lecture 9 



Example for Bayes rule 

Bayes Rule                          
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Example for Bayes rule 

0.9 0.999 0.0999 0.1 
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Example for Bayes rule 
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Recap Chain Rule 

)(

),(
)|(

HP

HSP
HSP 

)(

),(
)|(

SP

HSP
SHP 

)(

)()|(
)|(

HP

SPSHP
HSP 

),,( FSHP

Bayes Theorem 
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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions :More 

compact Distributions and Structures 

 

 



Do you always need to revise your beliefs? 

……  when your knowledge of Y’s value doesn’t affect your belief 

in the value of X 

DEF. Random variable X is marginal independent of random 

variable Y if, for all xi  dom(X), yk  dom(Y), 

   P( X= xi | Y= yk) = P(X= xi ) 

Consequence: 

P( X= xi , Y= yk) = P( X= xi | Y= yk) P( Y= yk) = 

= P(X= xi ) P( Y= yk)  
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Marginal Independence: Example 

• X and Y are independent  iff: 

 

 

 P(X|Y) = P(X)    or P(Y|X) = P(Y)     or P(X, Y) = P(X) P(Y) 

•  That is new evidence Y(or X) does not affect current belief 

in X (or Y) 

• Ex:   P(Toothache, Catch, Cavity, Weather) 

 = P(Toothache, Catch, Cavity. 

 

• JPD requiring     entries is reduced to two smaller ones (    
and       ) 
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In our example are Smoking and Heart Disease 

marginally Independent ? 

What our probabilities are telling us….? 

P(H,S) P(H) 

P(S) 
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 h 
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.30 .70 

P(S|H) 

.666 .334 

.29 .71 

s  s 

h 

 h 
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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions :More 

compact Distributions and Structures 

 

 



Conditional Independence 

• With marg. Independence, for n independent 
random vars, O(2n) → 

 

 

 
 

 

• Absolute independence is powerful but when you 
model a particular domain, it is ………. 

• Dentistry is a large field with hundreds of 

variables, few of which are independent 

(e.g.,Cavity, Heart-disease).  

• What to do? 
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Look for weaker form of independence 

• P(Toothache, Cavity, Catch) 

 

• Are Toothache and Catch marginally independent? 

 

 

• BUT If I have a cavity, does the probability that the probe 
catches depend on whether I have a toothache? 

(1) P(catch | toothache, cavity) = 
 

• What if I haven't got a cavity? 

(2) P(catch | toothache,cavity) = 

 

• Each is directly caused by the cavity, but neither 

has a direct effect on the other 
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Conditional independence 

• In general, Catch is conditionally independent of Toothache 
given Cavity: 

P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

• Equivalent statements: 

P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 

 

P(Toothache, Catch | Cavity) =  

    P(Toothache | Cavity) P(Catch | Cavity) 
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Proof of equivalent statements 
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Conditional Independence: Formal Def. 

DEF. Random variable X is conditionally independent of 

random variable Y given random variable Z if, for all 

xi  dom(X), yk  dom(Y), zm  dom(Z) 

   P( X= xi | Y= yk , Z= zm ) = P(X= xi | Z= zm ) 

That is, knowledge of Y’s value doesn’t affect your 

belief in the value of X, given a value of Z 

Sometimes, two variables might not be marginally 
independent. However, they become independent 
after we observe some third variable 
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Conditional independence: Use 

• Write out full joint distribution using chain rule: 

 P(Cavity, Catch, Toothache) 

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 

 = P(Toothache |      ) P(Catch | Cavity) P(Cavity) 

 

 

 how many probabilities? 

 

• The use of conditional independence often reduces the size of 
the representation of the joint distribution from exponential in n 
to linear in n.  What is n? 

 

• Conditional independence is our most basic and robust 
form of knowledge about uncertain environments. 
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Conditional Independence Example 2 

• Given whether there is/isn’t power in wire w0, is 

whether light l1 is lit or not, independent of the 

position of switch s2? 
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Conditional Independence Example 3 

• Is every other variable in the system independent 

of whether light l1 is lit, given whether there is 

power in wire w0 ? 
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Learning Goals for Prob. Intro 

• You can: 

• Given a joint, compute distributions over any 

subset of the variables 

• Prove the formula to compute P(h|e) 

• Derive the Chain Rule and the Bayes Rule 

• Define Marginal Independence 

• Define and use Conditional Independence 

 

 



Where are we? (Summary) 
• Probability is a rigorous formalism for uncertain 

knowledge 
 

• Joint probability distribution specifies probability of 
every possible world 
 

• Queries can be answered by summing over 
possible worlds 
 

• For nontrivial domains, we must find a way to 
reduce the joint distribution size 
 

• Independence (rare) and conditional 
independence (frequent) provide the tools 
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Key points Recap 

• We model the environment as a set of …. 
 

• Why the joint is not an adequate representation ?  
 

• “Representation, reasoning and learning” are 
“exponential” in ….. 
 

• Solution: Exploit marginal&conditional 
independence  
 
 
 

• But how does independence allow us to simplify the 
joint? 
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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions :More 

compact Distributions and Structures 
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Answering Query under Uncertainty 

Static Belief 

Network & Variable 

Elimination 

Dynamic Bayesian 

Network 

Probability Theory 

Hidden Markov Models 

Email spam filters 

Diagnostic 

Systems (e.g., 

medicine) 

Natural 

Language 

Processing 

Student Tracing in 

tutoring Systems 

Monitoring 

(e.g credit cards) 



Bayesian Network Motivation 

• We want a representation and reasoning system that is 

based on conditional (and marginal) independence 

– Compact yet expressive representation 

– Efficient reasoning procedures 

• Bayesian (Belief) Networks are such a representation 

– Named after Thomas Bayes (ca. 1702 –1761) 

– Term coined in 1985 by Judea Pearl (1936 –  ) 

– Their invention changed the primary focus of AI from logic to 

probability! 

 
 

 

 

 

 

Thomas Bayes                  Judea Pearl 35 

Pearl just received  

the ACM Turing Award 

(widely considered the  

"Nobel Prize in Computing“) 

for his contributions to 

Artificial Intelligence! 

http://www.acm.org/press-room/news-releases/2012/turing-award-11/
http://www.acm.org/press-room/news-releases/2012/turing-award-11/
http://www.acm.org/press-room/news-releases/2012/turing-award-11/
http://www.acm.org/press-room/news-releases/2012/turing-award-11/
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Belief Nets: Burglary Example 
• There might be a burglar in my house 

 

• The anti-burglar alarm in my house may go off 

 

• I have an agreement with two of my neighbors,  John and 
Mary, that they call me if they hear the alarm go off when 
I am at work 

 

• Minor earthquakes may occur and sometimes the set off 
the alarm.  
 

 

• Variables: 
 

• Joint has                 entries/probs 
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Belief Nets: Simplify the joint 
• Typically order vars to reflect causal knowledge 

(i.e., causes before effects) 
– A burglar (B) can set the alarm (A) off 

– An earthquake (E) can set the alarm (A) off 

– The alarm can cause Mary to call (M) 

– The alarm can cause John to call (J) 

 

 

• Apply Chain Rule 

 

 

• Simplify according to marginal&conditional 
independence 
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Belief Nets: Structure + Probs 

• Express remaining dependencies as a network 
– Each var is a node 

– For each var, the conditioning vars are its parents 

– Associate to each node corresponding conditional 
probabilities 

 

• Directed Acyclic Graph (DAG)  
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Burglary: complete BN 

B E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions :More 

compact Distributions and Structures 
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Burglary  Example: Bnets inference 

• (Ex1) I'm at work,  

– neighbor John calls to say my alarm is ringing,  

– neighbor Mary doesn't call.  

– No news of any earthquakes.  

– Is there a burglar? 

• (Ex2) I'm at work,  

– Receive message that neighbor John called ,  

– News of minor earthquakes.  

– Is there a burglar? 

 
 

 

 

Our BN can answer any probabilistic query that can be 
answered by processing the joint! 
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Bayesian Networks – Inference Types 

Diagnostic 

Burglary 

Alarm 

JohnCalls 

P(J) = 1.0 

P(B) = 0.001 

0.016 

Burglary 

Earthquake 

Alarm 

Intercausal 

P(A) = 1.0 

P(B) = 0.001 

0.003 

P(E) = 1.0 

JohnCalls 

Predictive 

Burglary 

Alarm 

P(J) = 0.011 

0.66 

P(B) = 1.0 

Mixed 

Earthquake 

Alarm 

JohnCalls 

P(M) = 1.0 

P(E) = 1.0 

P(A) = 0.003 

 0.033 
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BNnets: Compactness 

B 
E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) 
P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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BNets: Compactness 

In General: 

A CPT for boolean Xi with k boolean parents has          rows for 
the combinations of parent values 

Each row requires one number pi  for Xi = true 
(the number for  Xi = false is just 1-pi ) 

 

If each variable has no more than k parents, the complete 
network requires   O(                      ) numbers 

 

For k<< n, this is a substantial improvement,  

• the numbers required  grow linearly with n, vs. O(2n) for 
the full joint distribution 
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BNets: Construction General 

Semantics 
• The full joint distribution can be defined as the product 

of conditional distributions: 

•  P (X1, … ,Xn) = πi = 1  P(Xi | X1, … ,Xi-1)  (chain rule)   

 

• Simplify according to marginal&conditional 
independence 
 

 
 

•                                      

n 

• Express remaining dependencies as a network 

• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 

 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

n 



How to build  a Bayesian network 

• Define a total order over the random variables:  (X1, …,Xn) 

• If we apply the chain rule, we have 

 P(X1, …,Xn) = ∏n
i= 1 P(Xi | X1, … ,Xi-1) 

 

•  Define as parents of random variable Xi in the Belief network  a  
minimal set of its predecessors Parents(Xi) such that  

       

•   P(Xi | X1, … ,Xi-1) = P (Xi | Parents(Xi)) 

 

• Putting it all together, in a Belief network 

•  P(X1, …,Xn) = ∏n
i= 1 P (Xi | Parents(Xi)) 

 

 

 

 

  

Predecessors of Xi in 

the total order defined 

over  the variables  

Xi is conditionally 

independent from all 

its other predecessors 

given Parents(Xi) 

A Belief network defines a factorization over the 

JDP for its variables, based on existing conditional 

independencies among these variables 
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BNets: Construction General 

Semantics (cont’) 
n 

 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

 
 

• Every node is independent from its non-descendants given it 
parents 
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Other Examples: Fire Diagnosis 

(textbook Ex. 6.10) 
• Suppose you want to diagnose 

whether there is a fire in a 

building 

• you receive a noisy report 
about whether everyone is 
leaving the building. 

• if everyone is  leaving, this may 
have been caused by a fire 
alarm. 

• if there is a fire alarm, it may 
have been caused by a fire or 
by tampering 

• if there is a fire, there may be 
smoke raising from the bldg. 

 



Example for BN construction: Fire 

Diagnosis  

 

 

 

 

 
 

 
• We are not done yet: must specify the Conditional Probability Table 

(CPT) for each variable. All variables are Boolean. 

• How many probabilities do we need to specify for this Bayesian network? 

– This time taking into account that probability tables have 

to sum to 1 

49 

12 6 20 26-1 



Example for BN construction: Fire 

Diagnosis 
 

 

 

 

 

 
 

 
• We are not done yet: must specify the Conditional Probability Table 

(CPT) for each variable. All variables are Boolean. 

• How many probabilities do we need to specify for this Bayesian network?  

P(Tampering): 1 probability 

 P(Alarm|Tampering, Fire): 4 (independent) 

 1 probability for each of the 4 instantiations of the parents 

 In total: 1+1+4+2+2+2 = 12 (compared to 26 -1= 63 for full JPD!) 

50 



Recap of BN construction with a small 

example 

• Which (conditional) probability tables do we need? 
 

 

Disease Symptom 

P(D|S) P(D) P(S|D) P(D,S) 



Recap of BN construction with a small 

example 

• Which conditional probability tables do we need? 

– P(D) and P(S|D) 

– In general: for each variable X in the network: P( 

X|Pa(X) ) 

 

 

 

Disease Symptom 

P(D=t) 
Disease D P(S=t|D) 

t 

f 
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Other Examples (cont’) 

• Make sure you explore and understand the 

Fire Diagnosis example (we’ll expand on it to 

study Decision Networks) 

 

• Electrical Circuit example (textbook ex 6.11) 

 

• Patient’s wheezing and coughing example 

(ex. 6.14) 

 

• Several other examples on  
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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Belief network summary 

• A belief network is a directed acyclic graph (DAG) 
that effectively expresses  independence 
assertions among random variables.  

 

• The parents of a node X  are those variables on 
which X  directly depends. 

 

• Consideration of causal dependencies among 
variables typically help in constructing a Bnet 
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Belief networks Recap 

• By considering causal dependencies, 

we order variables in the joint. 

• Apply…………………….. and simplify 

• Build a directed acyclic graph (DAG) in which the parents 

of each var X are those vars on which X  directly depends. 

• By construction, a var is independent  form it non-

descendant  given its parents. 
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Belief Networks: open issues 

• Compactness: We reduce the number of probabilities 

from               to   

In some domains we need to do better than that! 

• Independencies:  Does a BNet encode more 

independencies than the ones specified by 

construction? 

• Still too many and often there are no 

data/experts for accurate assessment 

Solution: Make stronger (approximate) 

independence assumptions 
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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions :More 

compact Distributions and Structures 
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Bnets: Entailed (in)dependencies  

Indep(Report, Fire,{Alarm})? 

Indep(Leaving, SeeSmoke,{Fire})? 
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• Or, blocking paths for probability propagation. Three ways in 

which a path between X to Y can be blocked, (1 and 2 given 

evidence E ) 

 

Conditional Independencies 

Z 

Z 

Z 

X Y E 

Note that, in 3, X and Y become dependent as soon as I get 

evidence on Z or on any of its descendants 

1 

2 

3 
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Or ….Conditional Dependencies 

Z 

Z 

Z 

X Y 

E 

1 

2 

3 
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In/Dependencies  in a Bnet : Example 1 

Is A conditionally 

independent of I given F? 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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In/Dependencies  in a Bnet : Example 2  

Is H conditionally 

independent of E 

given I? 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions:     

More compact Distributions and Structures 
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More on Construction and Compactness: 

Compact Conditional Distributions 

Once we have established the topology of a Bnet, we still need 

to specify the conditional probabilities 

How? 

• From Data 

• From Experts 

 

To facilitate acquisition, we aim for compact representations for 

which data/experts can provide accurate assessments 
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More on Construction and Compactness: 

Compact Conditional Distributions 

From JointPD                                to  

 

But still, CPT grows exponentially with number of parents 

In realistic model of internal medicine with 448 nodes and 906 

links 133,931,430 values are required! 

 

And often there are no data/experts for accurate assessment 
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Effect with multiple non-interacting causes 

Malaria 

Fever 

Cold 

What do we need to specify? 

 
Flu 

Malaria 

 

Flu 
Cold P(Fever=T | ..) P(Fever=F|..) 

T T T 

T T F 

T F T 

T F F 

F T T 

F T F 

F F T 

F F F 

What do you think 

data/experts 

could easily tell 

you? 

 

More difficult to get info to assess more complex 

conditioning…. 
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Solution: Noisy-OR Distributions 

• Models multiple non interacting causes 

• Logic OR with a probabilistic twist.  

Malaria 

 

Flu Cold P(Fever=T | ..) P(Fever=F|..) 

T T T 

T T F 

T F T 

T F F 

F T T 

F T F 

F F T 

F F F 

• Logic OR Conditional Prob. Table.  
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Solution: Noisy-OR Distributions 
The Noisy-OR model allows for uncertainty in the ability of 

each cause to generate the effect (e.g.. one may have a 

cold without a fever) 

Two assumptions 

1. All possible causes a listed  

2. For each of the causes, whatever inhibits it to 

generate the target effect is independent from the 

inhibitors of the other causes   

 

Malaria 

 

Flu Cold P(Fever=T | ..) P(Fever=F|..) 

T T T 

T T F 

T F T 

T F F 

F T T 

F T F 

F F T 

F F F 
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Noisy-OR: Derivations  

 

For each of the causes, whatever inhibits it to generate the target 

effect is independent from the inhibitors of the other causes 

• Independent Probability of failure qi for each cause alone:  

• P(Effect=F | Ci = T, and no other causes) = qi 

• P(Effect=F | C1 = T,.. Cj = T, Cj+1 = F,., Ck = F)= 

• P(Effect=T | C1 = T,.. Cj = T, Cj+1 = F,., Ck = F) = 

 

C1 

Effect 

Ck 
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Noisy-OR: Example 
P(Fever=F| Cold=T, Flu=F, Malaria=F) = 0.6 

P(Fever=F| Cold=F, Flu=T, Malaria=F) = 0.2 

P(Fever=F| Cold=F, Flu=F, Malaria=T) = 0.1 

 • P(Effect=F | C1 = T,.. Cj = T, Cj+1 = F,., Ck = F)= ∏j
i=1 qi  

Model of internal medicine 

133,931,430  8,254 

 

Malaria 

 

Flu Cold P(Fever=T | ..) P(Fever=F|..) 

T T T 0.1 x 0.2 x 0.6 = 0.012 

T T F 0.2 x 0.1 = 0.02 

T F T 0.6 x 0.1=0.06 

T F F 0.9 0.1 

F T T 0.2 x 0.6 = 0.12 

F T F 0.8 0.2 

F F T 0.4 0.6 

F F F 1.0 

• Number of probabilities linear in ….. 
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Lecture Overview 

• Finish Intro to Probability 

–  Chain Rule and Bayes' Rule  

–  Marginal and Conditional Independence 

• Bayesian Networks 

– Build sample BN 

– Intro Inference, Compactness, Semantics 

– Implied Cond. Independences in a Bnet 

–  Stronger Independence assumptions:  

More compact Distributions and Structures 

 

 



Naïve Bayesian Classifier 

A very simple and successful Bnets that allow to classify entities 

in a set of classes  C, given a set of attributes 

Example:  

• Determine whether an email is spam (only two classes 

spam=T and spam=F) 

• Useful attributes of an email ? 

Assumptions 

• The value of each attribute depends on the classification 

• (Naïve) The attributes are independent of each other given 

the classification   

P(“bank” | “account” , spam=T) = P(“bank” | spam=T) 
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Naïve Bayesian Classifier for  Email Spam 

Email Spam 

Email contains  

“free” 

words 

Number of parameters? 

• What is the structure? 

Email contains  

“money” 
Email contains  

“ubc” 

Email contains  

“midterm” 

Assumptions 

• The value of each attribute depends on the classification 

• (Naïve) The attributes are independent of each other given 

the classification   

If you have a large collection of emails for which you 

know if they are spam or not…… 

Easy to acquire?  

75 CPSC 322, Lecture 9 



Most likely class given set of observations 

Is a given Email E spam? 

“free money for you now” 

NB Classifier for  Email Spam: Usage 

Email Spam 

Email contains  

“free” 

Email contains  

“money” 
Email contains  

“ubc” 

Email contains  

“midterm” 

Email is a spam if…….  
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For another example of naïve Bayesian 

Classifier  

See textbook ex. 6.16 

 

help system to determine what help page a 

user is interested in based on the keywords 

they give in a query to a help system. 
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Learning Goals for today’s class part-2 

• You can: 

• Given a Belief Net,  

• Compute the representational saving in terms on 

number of probabilities required 

• Determine whether one variable is conditionally 

independent of another variable, given a set of 

observations. 

• Define and use Noisy-OR distributions. Explain 

assumptions and benefit.  

• Implement and use a naïve Bayesian classifier.  

Explain assumptions and benefit.  
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Next Class 

• Practice Exercises Reasoning under Uncertainty: 

– Ex 6.A: conditional independence and intro to belief 

networks 

– Ex 6.B: more on belief networks 

• Assignment 3 is due now ! 

• Assignment 4 will be available  on Wed and will be 

self assessed. 

Course Elements 

Bayesian Networks Inference: Variable Elimination 
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Learning Goals for today’s class 

• You can: 

• Build a Belief Network for a simple domain 

 

• Classify the types of inference 

 

 

• Compute the representational saving in 

terms on number of probabilities required 

 

 

 



Lecture Overview 
 

• Recap with Example 

– Marginalization 

– Conditional Probability 

– Chain Rule 

 

• Bayes' Rule 

• Marginal Independence 

• Conditional Independence 

 our most basic and robust form of knowledge 
about uncertain environments. 
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Big Picture: R&R  systems 

• Environme

nt 
Problem 

Query 

Planning 

Deterministic Stochastic 

Search 

Arc Consistency 

Search 

Search 
Value Iteration 

Var. Elimination 

Constraint 
Satisfaction 

Logics 

STRIPS 

Belief Nets 

Vars +  
Constraints 

Decision Nets 

Markov Processes 

Var. Elimination 

Static 

Sequential 

Representation 

Reasoning 

Technique 

SLS 


