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| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

» Bayesian Networks
—Build sample BN
—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Independence assumptions :More
compact Distributions and Structures
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Recap Joint Distribution

=W He Hlse

kX
-3 binary random vay'éble;:/éH,S,F)

— H dom(H)={h, —-h} has heart disease, does not have...
— S dom(S)={s, =-s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet
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Recap Joint Distribution
J—O\'V\t Pro\o, Nistribofov <S'P:D>

-3 binary random variables: P(H,S,F)

— H dom(H)={h, —=h} has heart disease, does not have...
— S dom(S)={s, -s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet

(/ f ~f )

S — S S — S
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Recap Marginalization
-t e (nph)

S - S S — S
h [015) |[007 ] | [705) [[003
_hl21 |51 07 |.18
P(H,S)= > P(H,S,F=x)
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Recap Conditional Probability

h| .02 | .01 | .03 ID(H)
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Recap Conditional Probability (cont.)

| )

- Y . P(S,H)
P(S | H) = P(Xy. . X XY,L-_.YQ
‘f}(g l

/( P(H)
/
& H, F} | ouwar

Two key points we covered in previous lecture

* We derived this equality from a possible world
semantics of probability \

«_Itis not a probability distributions but.. st of-
A7 Fro’o %ﬁ'ﬂ\o

. One for each conflguratlon of the conditioning var(s j
/ oW & J"\Q\"cd v "1 -_
% 3 4 M ZCPSC ﬁz Le%:')ture96454‘“11> Jﬂo s

o4 K Yoimary vavs )




Product Rule

 Definition of conditional probability:
—P(X; | Xp) = P(Xy, Xp) [ P(Xp)~
* Product rule gives an alternative, more intuitive
formulation: -
- P(Xy, X%) :kp(z(z) P(X, | >M<2) = P(Xp) PO | X))~
] -
* Product rule general form:

P(X, ...,X) = CK1-~\>< ,th_’”x\/\S
ZZP(le--’ Q)P(éﬂ“" ”JL 1,...,X})
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Chain Rule

* Product rule general form:
P(Xy, ...,.X,) =
= P(Xq,e. s X)) PKiaqeve X0 | Xqpee s X))

e Chain rule is derived by successive application of
product rule: =)

) P%XI) POXa | Xq) - P(Xig | Xy, )
— ni:1 P(XI Xl’ ’Xi-l)
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Chain Rule: Example

P(cavity , toothache, catch) =

P (ennnt) = P Tosttsche | covidy) x
~ PCC&A (awtﬂ/%O*M%CL()

P(toothache, catch, cavity) =
P (tosthae Lﬁ} X ?CCB'l'C\'\ |Hooth aaL¢> * /T:Zoa\nh\\ foci?’ﬁf)

+H\ese d—ou( a‘CCQMPO?\A‘\‘O‘/‘S o O‘/\
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Using conditional probability

« Often you have causal knowledge (forward from cause to evidence):
— For example
v P(symptom | disease)
v P(light is off | status of switches and switch positions)
v P(alarm | fire)
— In general: P(evidence e | hypothesis h)

e ... and you want to do evidential reasoning (backwards from evidence
to cause):

— For example
v P(disease | symptom)
v P(status of switches | light is off and switch positions)
v P(fire | alarm)

— In general: P(hypothesis h | evidence e)
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Bayes Rule

By definition, we know that :

P(h|e)= P(:(g)e) P(e|h) =

We can rearrange terms to write
P(hae)=P(h|e)xP(e) (1)

P(e Ah)=P(e|h)xP(h) (2)
But
P(hae)=P(eah) (3)

From (1) (2) and (3) we can derive

Bayes Rule
P(h|e) = P(ell?e))P(h)

P(e A h)
P(h)
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Example for Bayes rule

On average, the alarm rings once a year
- P(alarm) =7

If there is a fire, the alarm will almost always ring

On average, we have a fire every 10 years

The fire alarm rings. What is the probability there is a fire?

Bayes Rule
o(h|e) = PEINP()

CPSC 322, Lecture 9 P(e) 13




Example for Bayes rule

On average, the alarm rings once a year
- P(alarm) = 1/365

If there is a fire, the alarm will almost always ring
- P(alarm|fire) = 0.999

On average, we have a fire every 10 years
- P(fire) =1/3650

The fire alarm rings. What is the probability there is a fire?
— Take a few minutes to do the math!

01999 09 00999 |01
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Example for Bayes rule

On average, the alarm rings once a year
- P(alarm) =1/365

If there is a fire, the alarm will almost always ring
- P(alarm|fire) = 0.999

On average, we have a fire every 10 years
- P(fire) =1/3650

The fire alarm rings. What is the probability there is a fire?

P(alarm|fire)XP(fire) _ 0.999 X 1/3650
P(alarm) - 1/365

P(fire|alarm) = = 0.0999

— Even though the alarm rings the chance for a fire is only about 10%)!
CPSC 322, Lecture 9 15



Recap Chain Rule
P(H,8,F)= P(H) & P(s[H)* C(F|4)5)

M{_PM) « P(FH9

PeA

Bayes Theorem

//

- P(H[S) =
' g\;‘k

(S)

(7 e

o)

¢

P(S,H)

P(S)

\ rewvete.

S CHISYRGS) = R, M)

2, Lecture 9
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| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

» Bayesian Networks
—Build sample BN
—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Independence assumptions :More
compact Distributions and Structures
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Do you always need to revise your beliefs?

...... when your knowledge of Y’s value doesn'’t affect your belief
In the value of X

DEF. Random variable X is marginal independent of random
variable Y if, for all x, e dom(X), y, € dom(Y),

P(X=X|Y=y,) =P(X=X)
Consequence:
P(X=X, Y=y ) =P(X=X | Y=y,) P(Y=Y,) =
=P(X=x) P(Y=Yyy)
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Marginal Independence: Example

« XandY are independent iff)'\‘P(x>: ?(K \\(3 = Pﬁﬂ_
- PO
L

W V)
/
[PIY) =PO9) ol Y[X) = PY) o PX, ) = P(X) P(Y)

« That is new evidence Y(or X) does not affect current belief

+ Ex—P e, Catch, @ Weather) L
= P(Toothache, Catch, Cavity% [P(weMMB] 1
7N

/]\ ’
E@requiring’il entries is reduced to two smaller ones (&
4 )

Torat pfsb. d«Sd-ﬁL/‘\d"'W‘

CPSC 322, Lecture 9 19




In our example are Smoking and Heart Disease
marginally Independent ?

What our probabilities are telling us....?

2/
P(H.S) _s P(H) )
S S N ?QS) | F(§>
]

h| .02 | .01
_hl| 28 | 69 | .97 No
p(s) = 3070

~
PSH) s s =

> | 666 | .334

InYa¥al
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| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

» Bayesian Networks
—Build sample BN
—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Independence assumptions :More
compact Distributions and Structures
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Conditional Independence

 With marg. Independence, for n independent
‘random vars, O(2") — O{M

ﬁ?@(iw S (K¢ 5 - S(P(K>

* Absolute independence Is powerful but when you

. Dentlstry Is a large field W|th hundreds of
variables, few of which are independent
(e.g.,Cavity, Heart-disease).

 What to do?

CPSC 322, Lecture 9 22



| ook for weaker form of independence/
P(Toothache, Cavity, Catch)

CCatdn D
Are Toothache and/Catch marginally independent
PV | Y D = P(lecke ) TNO

BUT If (have a cavityl, does the probability that the probe
catches depend on whether | have a toothache? NO

(1) P(catch | toothache, cavity) = P(zately | cawt
(ateh | tooghace, cavy

What if | haven't got a cavity?
(2) P(catch | toothache,—cavity) = Plcstcly \ L CM‘W\

» Each is directly caused by the cavity, but neither
has a direct effect on the other

CPSC 322, Lecture 9 23




Conditional independence

@ P(Catch | Toothache,Cavity) = P(Catch | Cavity) S

« Equivalent statements:
@ P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

@ P(Toothache, Catch | Cavity) =
P(Toothache | Cavity) P(Catch | Cavity)

?(x \/%}: P(xgz FC\/@Z
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Proof of equivalent statements

0

a P(x,2) B PCZ) 7

\MA -
@ POy | 2) - ?(X/YI%B %:/P(%Iz} P( I_%B a
A >
P ) P (&) e
PCY,2) ‘ (< ) {(P<Y|Z> 4 Pé()%ﬂ

———,
——

P(2) P(=)

CPSC 322, Lecture 9




Conditional Independence: Formal Detf.

Sometimes, two variables might not be marginally
Independent. However, they become independent
after we observe some third variable

DEF. Random variable X is conditionally independent of
random variable Y given random variable Z if, for all
X; € dom(X), y, € dom(Y), z,, € dom(Z)
P(X=X | Y=Yy, Z=2,) =P(X=x [ Z=2,,)
That is, knowledge of Y's value doesn’t affect your
belief in the value of X, given a value of Z

CPSC 322, Lecture 9 26



Conditional independence: Use

« Write out full joint distribution using chain rule:

(P(Cavw 'L,oihac.heD
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

—7

_LP(Toothache | Car\ml—u’ )\Fli(g%tch | CaV|ty)5 P(Cavity)

2 '3 2. a5
how many probabilities? 2°-1= v
2 4+2+4 =5

« The use of conditional independence often reduces the size of
the representation of the joint distribution from exponential in n
to linear in n. What is n? % ol vars

« Conditional independence is our most basic and robus
form of knowledge aboutyngertain environments. )



Conditional Independence Example 2

* Given whether there is/isn’t power in wire w0, is °
whether light |1 is lit or not, independent of the
position of switch s2?

I
P{Z/_,_l S, / WOB‘:P<@1
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Conditional Independence Example 3

 |s every other variable in the system independent®
of whether light 11 is lit, given whether there Is
power in wire w0 ?

CPSC 322, Lecture 9 ' 1 29



Learning Goals for Prob. Intro

YOU can:

Given a joint, compute distributions over any
subset of the variables

Prove the formula to compute P(h|e)
Derive the Chain Rule and the Bayes Rule
Define Marginal Independence

Define and use Conditional Independence

CPSC 322, Lecture 9 Slide 30



Where are we? (Summary)
Probabillity is a rigorous formalism for uncertain
knowledge

/=
Joint probability distribution specifies probability of
every possible world

Queries can be answered by summing over
possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional ="
Independence (frequent) provide the tools
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Key points Recap

« \We model the environment as a set of 21dom vesrs

Xp - Xy 3D PO - X))
* Why the joint’is not an adequate representation ?

G‘Representati n, reasoning and learning” are
“‘exponential”’ in ..ZFvors

* Solution: Exploit marginal&conditipnal
PR 7y |t 2)= k| 2

» But how degs.independence allow us to simplify the

joint? CPSC 322, Lecture 9 Slide 32




| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

« Bayesian Networks
—Build sample BN

—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Independence assumptions :More
compact Distributions and Structures
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Answering Query under Uncertainty

Probability Theory @

\< &e ll G«\
/
Dynamic Bayesian’
Static Belief Network
Neftwork & Variable /
" Eljm Hidden Markov Models /

Natural
Language
Processing

— |y O, W | Il Knew
Yow will Knew ali

Sowme Applicat), .
3

Diagnostic
Systems (e.g.
medicine
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Bayesian Network Motivation

« We want a representation and reasoning system that is
based on conditional (and marginal) independence
— Compact yet expressive representation
— Efficient reasoning procedures

« Bayesian (Belief) Networks are such a representation
— Named after Thomas Bayes (ca. 1702 -1761)
— Term coined in 1985 by Judea Pearl (1936 — )

— Their invention changed the primary focus of Al from logic to
probability!

Pearl just received

the ACM Turing Award
(widely considered the
"Nobel Prize in Computing®)
for his contributions to
Artificial Intelligence!

o il i ’ \
Thomas Bayes Judea Pearl 35


http://www.acm.org/press-room/news-releases/2012/turing-award-11/
http://www.acm.org/press-room/news-releases/2012/turing-award-11/
http://www.acm.org/press-room/news-releases/2012/turing-award-11/
http://www.acm.org/press-room/news-releases/2012/turing-award-11/

Belief Nets: Burglary Example

There might be a burglar in my house
B

The anti-burglar alarm in my house may go off

A

| have an agreement with two of my neighbors, John and
Mary, that they call me if they hear the alarm go off when
| am at work -

F J

Minor earthquakes may occur and sometimes the set off
the alarm. C

Variables® A 1177 E w=5

5 "
Jointhas — 1 entries/probs 2 -



Belief Nets: Simplify the joint

* Typically order vars to reflect causal knowledge

(l.e., causes before effects) 3 =
— A burglar (B) can set the alarm (A) off N L
— An earthquake (E) can set the alarm (A) off A
— The alarm can cause Mary to call (M) / \
— The alarm can cause John to call (J) M Ry
F( B, EA M T \ e
Q&\m\ wael” JRCaE

« Apply Chain Rule +*

(15) P(g/gj?(Ajﬁe)?(Am)Azé)P@WAz@

« Simplify according to marginal&conditional
iIndependence




Belief Nets: Structure + Probs
S PR+ P(E) « PLAIB,E) « P(M | A)+P( |A)

« EXxpress remaining dependencies as a network
— Each var is a node
— For each var, the conditioning vars are its parents

— Associate to each node corresponding conditional
probabilities ”Gﬁ’)

e(®
g’
o 6\A)@Pg }j P (AN

 Directed Acyclic Graph (DAG) Slide 38




P(BY < Burglary complete BN (=)

P(B=T)

P(B=F)

.001

999

T&ﬁnac;a“;s
©{) (j]/\)

SRR

P(E=T) | P(E=F)
.002 .998

PCA [,

P(A=T | B,E) | P(A=F | B,E)
.95 .05
94 .06
29 71
.001 999

P(h A)

A PU=T|A) | PQ=F|A)

T 90 10

F ﬂ)ﬂ 95
\

Cak\ «¥°Y' o

P(M=T | A) | P(M=F | A)
70 30
(.o1) 99
N
¢

other vressons
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| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

» Bayesian Networks BREAK
—Build sample BN 4_/ 30 MiNS
—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Independence assumptions :More
compact Distributions and Structures
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be
answered by processing the joint!

* (Ex1) I'm at work,
e neighbor John calls to say my alarm is ringing,

o neighbor Mary doesn't call. /(9
_—— No news of any earthquakes. m

— |Is there a burglar? |
* (Ex2) I'm at work, ¢4 ¥>— g ®

— Receive message that neighbor John called ,
— News of minor earthquakes. /(9

— |Is there a burglar?
AJ)space @m@
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Bayesian Networks — Inference Types

Diagnostic Predictive Intercausal Mixed

| Burglary |

P(E) =
| Burglary | Eart;q)uakefl\DEarthquake |
(B) =0.001 P(B) = = 10
Zam Alarm | Burglary |
P(B) = 0.001 P(A) = 0.003
0.003 0.033
JohnCalls | [ JohnCalls | | Johncalls |
PJ) = 1.0 P(J) = 0.011 P(M) = 1.0
0.66
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P(B=T) | P(B=F)
001 999
o

BNnets: Compactness

P(A=T | B,E)

.95

.05

06

999

A PU=T|A) | PU=F]|A)
T .90 10
F .05 .95

&SPD\ = ’Ls —\

A

BNet—

=

| ——
: S é('
71 —

=

P(E=T) | P(EF)
002 998
P(A=F | B,E)

P(M=T |A) | P(M=F]|A)
.70 .30
.01 .99

2+t +1ed=]O

CPSC 322, Lecture 9
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s BNets: Compactness

[IOV\\O\‘B\O\\\J\'V( © DO O
RS pahe LN K
In General: X/L

: K
for boolean X; with k boolean parents has Z rows for
the combinations of parent values T

Each row requires one number p; for X; = true
(the number for X, = false is just 1-p;)

»f’or‘ exch vode

If each variable has no more aﬂ parents, the complete
network requires  O( ) numbers

For k<< n, this is a substantial improvement,

* the numbers required( grow linearly witﬂ vs. O(2") for
the full joint distribution

CPSC 322, Lecture 9 Slide 44



BNets: Construction General

... Semantics _
* The full joint distribution can be defined as the product

of conditional distributions: -
‘ P (X, ..., X)) = Tl'in:1 P(Xi | Xy, ... . X;) (chain rule)

[

« Simplify according to marginal&conditional

Indepnendence
« Express remaining dependencies as a network

* Eachvaris a node
* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional ¢~
probabilities

/ : Y
V4
P (Xy, ..., X)) = Trizl P (X] Pa@i—))j

CPSC 322, Lecture 9 Slide 45




How to build a Bayesian network

 Define a total order over the random variables: (X, ...,X\)

 |If we apply the chain rule, we have Predecessors of X; in

P(Xy, ... X5) = [T"= 1 P(X |/ the total order defined

over the variables

Define as parents of random variable X

e Belief network a
minimal set of its predecessors P

arents(X;) such that

X, 1s conditionally
independent from all
its other predecessors

- Putting it all together, in a Belief network | 9'ven Parents(X;)
o P(Xy, ... X)) =[Nz P (X | Parents(X,))

«  P(X = P (X, | Parents(X;)) <

A Belief network defines a factorization over the
JDP for its variables, based on existing conditional
Independencies among these variables



BNets: Construction General
Semantics (cont’)

n

P (X, ...,X,) = IT._, P (X.| Parents(X.)

« Every node is independent from its non-descendants given it

X
A

SN
£ RN

CPSC 322, Lecture 9 Slide 47
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Other Examples: Fire Diagnosis
(textbook Ex. 6.10)

Suppose you want to diagnose
whether there is a fire in a P=) PCF )

building

you receive a noisy report
about whether everyone is
leaving the building. Pt

If everyone is leaving, this may
have been caused by a fire | P(L\A>

alarm.
If there is a fire alarm, it may @

have been caused by a fire or
by tampering \‘/ PR | L)

if there is a fire, there may be @
smoke raising from the bldg.

cture 9 Slide 48




Example for BN construction: Fire
Diagnosis

 We are not done yet: must specify the Conditional Probability Table
(CPT) for each variable. All variables are Boolean.

 How many probabilities do we need to specify for this Bayesian network?
— This time taking into account that probability tables have

tosumto 1 . 12 20 [26
49



Example for BN construction: Fire
Diagnosis

 We are not done yet: must specify the Conditional Probability Table
(CPT) for each variable. All variables are Boolean.

 How many probabilities do we need to specify for this Bayesian network?
v P(Tampering): 1 probability
v" P(Alarm|Tampering, Fire): 4 (independent)
50 1 probability for each of the 4 instantiations of the parents
v In total: 1+1+4+2+2+2 = 12 (compared to 2° -1= 63 for full JPD!)



Recap of BN construction with a small
example
* Which (conditional) probability tables do we need?

P(D) P@DIS) PED) |PDS)



Recap of BN construction with a small
example

« Which conditional probability tables do we need?
— P(D) and P(S|D)

— In general: for each variable X in the network: P(
X|Pa(X) )

P(D=t) Disease D | P(S=t|D)
t

\ f
/
_sympom




Other Examples (cont’)

Make sure you explore and understand the p@@@
Fire Diagnosis example (we’ll expand on it to
study Decision Networks)

Electrical Circuit example (textbook ex 6.11) p@@@

/

(&

Patient’s wheezing and coughing example
(ex. 6.14)

p@@@

Several other examples on
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N

=

\5 Beta dlabulin )
)(O( ? swe-IIinQ
3 K.

Realistic BNet: Live
60 nodes Source: Onisko et a

D] ISTTD
iagnosiss >
S
[

Fat intolerance

Gallstones

Upper
abdominal Serum amylase
pain
History of
surgery
Pressure in
the RUQ

Lipase

Disbetes ( O (

Palpable
gallbladder
History of
alcohol abuse

medications Abnormal w
carbohydrate ( ej

__A metahiolism
Alcohol
intolerance
Hepatomegaly

Presence of
antibodies to
HEBsAg in blood

Liver disorder
Histary of viral
hepatitis

Presence of
antibodies to

Presence of

resence of

= SENCE HDY in blood
l;epallllsrB antibodies
surface antigen Presence toHBcAg in X
in blood of hepatitis @ E:L?;%?\d Hepatalgia
B antigen
in blood

Impaired
consciousness

Increased
liver density

athological
resistances

Intemational
{ hormalized ratio
™\, of prothrombin

Antimitochondrial
antibodies

A usculo-skeletal Total proteins
pain

- Iiregular
Jaunclilce liver edge
Sl Smooth muscle

antibodies

X
Antinuclear ; @
antibodies @ @ Gamma globulin

Irregular
liver

Haemorthagie
diathesis

emthemic
eruptions

Alphal Weight
Joint Alpha2 globulin qain
globulin
» ascular i
3 spiders haemorthagie
— l 0 spot
-—
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Realistic BNet: Liver Diagnhosis

Source: Onisko et al., 1999
usea ) { Gallstones }
Anorexia ‘

Upper
abdominal
pain

Serum an

- History of Palpable
Diarthoea _ . Total -
- Triglycerides helisterl surgery gallbladder

Pressure in

Pain in the RUQ the RUQ History
alcohol at

History of Choledochaolithatomy @ Her
hospitalization - me:

Liver disorder

=

History of viral
hepatitis

resence of
antibodies

=hce to HBcAgin
natitis blood

i
I:jgoedn Total bilirubin

Presence of
antibodies to
HDY in blood




Belief network summary

* A belief network Is a directed acyclic graph (DAG)
that effectively expresses independence
assertions among random variables.

* The parents of a node X are those variables on
which X directly depends.

 Consideration of causal dependencies among
variables typically help in constructing a Bnet
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Belief networks Recap

By considering causal dependencies,
we order variables in the joint.

. Apply"L‘b’“\*"‘“(ﬁ and simplify
PeEA T H)= AB FE) PlalBE) P(5 BEE \Ai§
wh M@F@/E—/ﬁ gorom A F(M@@

« Build a directed acyclic graph (DAG) in which the parents
of each var X are those vars on which X directly depends.

« By construction, a var is independent form it non-
descendant given its parents. A

Wlxu,’ 7
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Belief Networks: open Iissues

* Independencies: Does a BNet encode more, ~
Independencies than the ones specified by

construction? Y
75 V\\/ZS\/S K\o&“&—\fﬁs

« Compactness: We reduce @e number of probabilities

from 42\/' > o o(n 2 >

In some domains we need to do better than that!

« Still too many and often there are no A
data/experts for accurate assessment

N

Solution: Make stronger (approximate)
Independence assumptions
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| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

» Bayesian Networks

—Build sample BN

—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Independence assumptions :More
compact Distributions and Structures
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Bnets: Entailed (in)dependencies

— Indep(Report, Fire,{Alarm})?

b16§ 4 you Kunow the
vy lve 0+ A’l}‘(v\/\/

Kmowléélge, 9$ %q
Uyl e 4} 1’)1't

\/ @ docs Vlfad"
SQQ. SVV\OKQ ({ovr bcke Mp‘\;—\ac valuc
Indep(Leaving, SeeSmoke {Flre})
vyes
e ovx‘v’ ABPCV‘O\C"\W\ loc*'vu cewn

Léb\“‘"g 24 See SmoKe 1 %Wouz(l’\ Eiee

I+ fou Kngw Hhe wvalve o Five the v bicowe/
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« Or, blocking paths for probability propagation. Three ways in
which a path between X to Y can be blocked, (1 and 2 given

Conditional Independencies

_

&

evidence E)
/Y\ /L/< E
| O—O—F =
AN
2] Oe—o 15—
\
3 \7/@ o

‘Note that, in 3, X and Y become dependent as soon as [ ge

S0
O

evidence on Z or on any of its descendants




Or ....Conditional Dependencies
Tw 4,15 K Y »=< ole(?@«okemt

Y\

)
Y U

O
O
S

%
A@W\@C?\@g
P e—c

|

CRAECES
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In/Dependencies in a Bnet : Example 1
1Y O——O —O——O "
| O4—O  O—O

3| O —O
7

Is A conditionally
independent of | given F?

fzlse




In/Dependencies In a Bnet : Example 2

1

"O——O—F@5—0

Pax
OO O—
(CO—

Is H conditionally
independent of E

giver?;_?\ /r(t/‘e—

p@@@

'Ok
—O

-O

e 64



| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

» Bayesian Networks
—Build sample BN
—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Independence assumptions:
More compact Distributions|and Structures

CPSC 322, Lecture 9 Slide 65



More on Construction and Compactness:.
Compact Conditional Distributions

Once we have established the topology of a Bnet, we still need
to specify the conditional probabilities

How?
* From Data
 From Experts

To facilitate acquisition, we aim for compact representations for
which data/experts can provide accurate assessments
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More on Construction and Compactness:.
Compact Conditional Distributions

From JointPD Z 1 to A Z/ K

But still, CPT grows exponentially with number of parents

In realistic model of internal medicine with 448 nodes and 906
links 133,931,430 values are required!

And often there arews for accurate assessment
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Effect with multiple non-interacting causes
What do we need to specify?

Malaria

Flu

Cold

P(Fever=T]| ..)

P(Fever=F|..)

CMalaria > C_Flu_>
/L\C—
Fever

—H| A 4|

T

What do you think
data/experts =
could easily tell
you? — Causﬁ_}

g oS -

More difficult to get info to assess more complex

conditioning....
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Solution: Noisy-OR Distributions

* Models multiple non interacting causes
* Logic OR with a probabilistic twist.

* Logic OR Conditional Prob. Table.

Malaria Flu Cold | P(Fever=T]..) | P(Fever=F|..)
T T T ( '@
T T F \ e,
T F T \ O
T F F ) o
F T T / O
F T F ] 0
F F T L 0,
F F F O ‘
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Solution: Noisy-OR Distributions
The Noisy-OR model allows for uncertainty in the ability of
each cause to generate the effect (e.g.. one may have a

cold without a fever) Malaria | Flu | Cold | P(Fever=T|..) | P(Fever=F|..)
T T T 7 "\
5 T T F / \
\(‘9 | —— F I /
A oN %@ é/ T F F
F T T
F T F \ /
F F T N~
F F

Two assumptions
1. All possible causes a listed

2. For each of the causes, whatever inhibits it to ///
generate the target effect is independent from the
inhibitors of the other causes

0
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Noisy-OR: Derivations

For each of the causes, whatever inhibits it to generate the target

effect is independent from the inhibitors of the other causes

Independent Probability of failure g;for each cause alone:

P(Effect=F | C,= T, and no other causes) = g,

ety

-
P(Effect=F {C,=T,.C;=T
P(Effect=T (ZT Ci=T,Cu=F.,C=F)= S
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2
P(Fever=F

P(Fever=F
P(Fever=F

Noisy-OR: Example

Model of internal medicine

Flu=F, Malaria=F) = 0.6

Cold=F, Flu=T, Malaria=F) =0.2 ) 133 931 43
Cold=F, Flu=F, Malaria=T) = 0.1 /~—

— 8.254
028,254,

Ubs\"’\X Nolsy_p Rs

* P(Effect=F |C,=T,..C;=T,Cy =F,.,C=F)=[Pi-1 q

Malaria Flu Cold |P(Fever=T|..) P(Fever=F|..)
> T T T . I3 0.1x0.2x0.6=0.012
>(T (T F > . 9¢ 0.2x0.1=0.02
T F T Ak 6 x 0.1=0.06
> T F F (09 0.1 &<
: T T ¥ 0.2x0.6=0.12)
> F T F % 0.2 < |
- F F T 0.4 064
F F F ol o ceqphiveA 10 .ww\\\ﬁ ]
«  Number of probabilities linear in ..... K ERARIL



| ecture Overview

* Finish Intro to Probability
— Chain Rule and Bayes' Rule
— Marginal and Conditional Independence

» Bayesian Networks
—Build sample BN

—Intro Inference, Compactness, Semantics
—Implied Cond. Independences in a Bnet

— Stronger Inde

nendence assum

More compact

Distributions and
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Nailve Bayesian Classifier

A very simple and successful Bnets that allow to classify entities
in a set of classes C, given a set of attributes

/ >

Example:

* Determine whether an email is spam (only two classes
spam=T and spam=F)

o Useful attributes of an email ?

\

wovds

Assumptions
* The value of each attribute depends on the classification

* (Naive) The attributes are independent of each other given
the classification

P(“bank” | “account” , spam=T) = P(“bank” | spam=T)
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Nailve Bayesian Classifier for Email Spam

Assumptions
* The value of each attribute depends on the classification

* (Naive) The attributes are independent of each other giverié
the classification

z

* What is the structure?

g)
words
mall contains mall contains mall contains mail contains
free money ubc mldterm

Number of parameters? o 0

Z

Easy to acquire?
If you have a large collection of emails for which you

know if they are spam or not......
CPSC 322, Lecture 9 75



NB Classifier for Email Spam: Usage

Most likely class given set of observations
£

Is a given Email £ spam?

“free money for you now” @
- — ?Cgf?3

mail contains mail contains ) mail contains
free”=[_ money” = “ubc’=+

Email is a spam if....... P(S :TB P PKS:Q
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For another example of naive Bayesian
Classifier

See textbook ex. .16  /—

help system to determine what help page a
user Is interested in based on the keywords
they give In a query to a help system.
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Learning Goals for today’s class part-2

* YOU can:
 Given a Belief Net,

« Compute the representational saving in terms on
number of probabilities required

« Determine whether one variable is conditionally
Independent of another variable, given a set of
observations.

« Define and use Noisy-OR distributions. Explain
assumptions and benefit.

* Implement and use a naive Bayesian classifier.
Explain assumptions and benefit.
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Next Class

Bayesian Networks Inference: Variable Elimination

Course Elements

* Practice Exercises Reasoning under Uncertainty:

— Ex 6.A: conditional independence and intro to belief
networks

— Ex 6.B: more on belief networks

* Assignment 3 is due now !

* Assignment 4 will be available on Wed and will be
self assessed.
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Learning Goals for today’s class

* YOu can:
» Build a Belief Network for a simple domain

 Classify the types of inference
Dlz%v\ogo"\c | Pr@o\{c&-\‘vﬁ/ ’/rm'\’@rCzqu) | H\Xfél

« Compute the representational saving in
terms on number of probabilities required

CPSC 322, Lecture 9 Slide 80



| ecture Overview

Recap with Example
— Marginalization

— Conditional Probability
— Chain Rule 2

Bayes' Rule &

Marginal Independence
Conditional Independence @
our most basic and robust form of knowledge
about uncertain environments.
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Big Picture: R&R systems

e Environme

Deterministic nt Stochastic
Problem Arc Consistency for (5P
. ¥
Constraint |grs + | ocaroh
St Satlsfactlor} Constraints 3LS .
atic — .
] — - 3P, (Belief Nets /
Query | |kogies /24’0;@\'6"‘7 Var. Elimination
| Search " #""" J
Sequential STR/PS CSP | Decision Nelts |
_ o mw_\? | Var. Elimination |
n ; ’ N Search1” G"Wmm Markov Processes
Representation | Value Iteration |

Reasoning
Technique
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