
CPSC 322, Lecture 5 Slide 1

(Stochastic) Local Search
Computer Science cpsc322, Lecture 5

(Textbook Chpt 4.8-4.9)

May, 22, 2012

CPSC 322, Lecture 5 Slide 2

Course Announcements

Posted on WebCT

• Assignment2 on CSPs (due on Thurs!)

If you are confused about basic CSPs….. Check learning

goals at the end of lectures. Please come to office hours

• Work on CSPs Practice Ex:
• Exercise 4.A: arc consistency

• Exercise 4.B: constraint satisfaction problems

• Exercise 4.C: SLS for CSP

 • MIDTERM: Mon May 28th – 3PM (room TBA)

http://www.aispace.org/exercises/exercise4-a-1.shtml
http://www.aispace.org/exercises/exercise4-b-1.shtml
http://www.aispace.org/exercises/exercise4-c-2.shtml

CPSC 322, Lecture 5 Slide 3

Systematically solving CSPs: Summary

• Build Constraint Network

• Apply Arc Consistency

• One domain is empty

• Each domain has a single value

• Some domains have more than one value

• Apply Depth-First Search with Pruning

• Split the problem in a number of disjoint cases

• Apply Arc Consistency to each case

CPSC 322, Lecture 5 Slide 4

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 5

Local Search motivation: Scale
• Many CSPs (scheduling, DNA computing, more

later) are simply too big for systematic approaches

• If you have 105 vars with dom(vari) = 104

• but if solutions are densely distributed…….

• Systematic Search • Constraint Network

CPSC 322, Lecture 5 Slide 6

Local Search: General Method

Remember , for CSP a solution is…..

• Start from a possible world

• Generate some neighbors (“similar” possible worlds)

• Move from the current node to a neighbor, selected

according to a particular strategy

• Example: A,B,C same domain {1,2,3}

CPSC 322, Lecture 5 Slide 7

Local Search: Selecting Neighbors

How do we determine the neighbors?

• Usually this is simple: some small incremental change to
the variable assignment

a) assignments that differ in one variable's value, by (for instance) a
value difference of +1

b) assignments that differ in one variable's value

c) assignments that differ in two variables' values, etc.

• Example: A,B,C same domain {1,2,3}

Iterative Best Improvement

• How to determine the neighbor node to be selected?

• Iterative Best Improvement:

• select the neighbor that optimizes some evaluation
function

• Which strategy would make sense? Select neighbor
with …

Minimal number of constraint violations

Similar number of constraint violations as current state

Maximal number of constraint violations

No constraint violations

Iterative Best Improvement

• How to determine the neighbor node to be selected?

• Iterative Best Improvement:

• select the neighbor that optimizes some evaluation
function

• Which strategy would make sense? Select
neighbour with …

• Evaluation function:
h(n): number of constraint violations in state n

• Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n
with minimal h(n)

• Hill climbing: equivalent algorithm for maximization problems

• Here: maximize the number of constraints satisfied

Minimal number of constraint violations

CPSC 322, Lecture 5 Slide 10

Selecting the best neighbor

A common component of the scoring function (heuristic) =>

select the neighbor that results in the ……

- the min conflicts heuristics

• Example: A,B,C same domain {1,2,3} , (A=B, A>1, C≠3)

Example: N-Queens

• Put n queens on an n × n board with no two

queens on the same row, column, or diagonal

(i.e attacking each other)

• Positions a queen

can attack

Example: N-queen as a local search problem

CSP: N-queen CSP
- One variable per column; domains {1,…,N} => row where

the queen in the ith column seats;

- Constraints: no two queens in the same row, column or
diagonal

Neighbour relation: value of a single column differs

Scoring function: number of constraint violations (i..e,
number of

 attacks)

CPSC 322, Lecture 5 Slide 13

Example: n-queens
Put n queens on an n × n board with no two queens on

the same row, column, or diagonal (i.e attacking each other)

Example: Greedy descent for N-Queen
For each column, assign randomly each queen to a row

 (a number between 1 and N)

Repeat

• For each column & each number: Evaluate how many

constraint violations changing the assignment would

yield

• Choose the column and number that leads to the

fewest violated constraints; change it

Until solved

15

h = 5 h = ? h = ?

3 1 0 2

CPSC 322, Lecture 5 Slide 16

n-queens, Why?

Why this problem?

Lots of research in the 90’ on local search for CSP

was generated by the observation that the run-

time of local search on n-queens problems is

independent of problem size!

CPSC 322, Lecture 5 Slide 17

Lecture Overview

• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 18

Constrained Optimization Problems

So far we have assumed that we just want to find a

possible world that satisfies all the constraints.

But sometimes solutions may have different values /

costs

• We want to find the optimal solution that

• maximizes the value or

• minimizes the cost

CPSC 322, Lecture 5 Slide 19

Constrained Optimization Example

Hill Climbing means selecting the neighbor which best

improves a (value-based) scoring function.

Greedy Descent means selecting the neighbor which

minimizes a (cost-based) scoring function.

The scoring function we’d like to maximize might be:

f(n) = (C + A) + #-of-satisfied-const

• Example: A,B,C same domain {1,2,3} , (A=B, A>1, C≠3)

• Value = (C+A) so we want a solution that maximize that

CPSC 322, Lecture 5 Slide 20

Hill Climbing

NOTE: Everything that will be said for Hill

Climbing is also true for Greedy Descent

CPSC 322, Lecture 5 Slide 21

Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

(Plateau)

CPSC 322, Lecture 5 Slide 22

Corresponding problem for GreedyDescent

Local minimum example: 8-queens problem

A local minimum with h = 1

CPSC 322, Lecture 5 Slide 23

Even more Problems in higher dimensions

E.g., Ridges – sequence of local maxima not

directly connected to each other

From each local maximum you can only

 go downhill

CPSC 322, Lecture 5 Slide 24

Lecture Overview

• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 25

Local Search: Summary

• A useful method in practice for large CSPs

• Start from a possible world

• Generate some neighbors (“similar” possible worlds)

• Move from current node to a neighbor, selected to

minimize/maximize a scoring function which combines:

 Info about how many constraints are violated

 Information about the cost/quality of the solution (you want the

best solution, not just a solution)

CPSC 322, Lecture 5 Slide 26

Stochastic Local Search

GOAL: We want our local search

• to be guided by the scoring function

• Not to get stuck in local maxima/minima, plateaus etc.

• SOLUTION: We can alternate
a) Hill-climbing steps

b) Random steps: move to a random neighbor.

c) Random restart: reassign random values to all
variables.

Which randomized method would work best in each of

these two search spaces?

Greedy descent with random steps best on A

Greedy descent with random restart best on B

 Greedy descent with random steps best on B

Greedy descent with random restart best on A

 equivalent

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

A B

• But these examples are simplified extreme cases for illustration

- in practice, you don’t know what your search space looks like

• Usually integrating both kinds of randomization works best

Greedy descent with random steps best on B

Greedy descent with random restart best on A

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

A B

Which randomized method would work best in each of

the these two search spaces?

CPSC 322, Lecture 5 Slide 29

Random Steps (Walk)

Let’s assume that neighbors are generated as
• assignments that differ in one variable's value

How many neighbors there are given n variables with
domains with d values?

One strategy to add randomness to the
selection variable-value pair.
Sometimes choose the pair

• According to the scoring function

• A random one
 E.G in 8-queen

• How many neighbors?

• ……..

CPSC 322, Lecture 5 Slide 30

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

• Sometimes select variable:
1. that participates in the largest number of conflicts.

2. at random, any variable that participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

0

2

2

3

3

2

3 Aispace

2 a: Greedy Descent with
Min-Conflict Heuristic

CPSC 322, Lecture 5 Slide 31

Successful application of SLS

• Scheduling of Hubble Space Telescope:

reducing time to schedule 3 weeks of

observations:

 from one week to around 10 sec.

32

Example: SLS for RNA secondary structure design
RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function

Predicting structure for a
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure?

• Local search over strands

 Search for one that folds
into the right structure

• Evaluation function for a strand

 Run O(n3) prediction algorithm

 Evaluate how different the result is
from our target structure

 Only defined implicitly, but can be
evaluated by running the prediction algorithm

RNA strand
GUCCCAUAGGAUGUCCCAUAGGA

Secondary structure

Easy Hard

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC

[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

 CPSC 322, Lecture 1

CSP/logic: formal verification

33

 Hardware verification Software verification

 (e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:

 Encodings into propositional satisfiability (SAT)
CPSC 322, Lecture 1

CPSC 322, Lecture 5 Slide 34

(Stochastic) Local search advantage:

Online setting
• When the problem can change (particularly

important in scheduling)

• E.g., schedule for airline: thousands of flights and

thousands of personnel assignment

• Storm can render the schedule infeasible

• Goal: Repair with minimum number of changes

• This can be easily done with a local search starting

form the current schedule

• Other techniques usually:

• require more time

• might find solution requiring many more changes

SLS limitations

• Typically no guarantee to find a solution even if one exists

• SLS algorithms can sometimes stagnate

Get caught in one region of the search space and never terminate

• Very hard to analyze theoretically

• Not able to show that no solution exists

• SLS simply won’t terminate

• You don’t know whether the problem is infeasible or the

algorithm has stagnated

SLS Advantage: anytime algorithms

• When should the algorithm be stopped ?

• When a solution is found

(e.g. no constraint violations)

• Or when we are out of time: you have to act NOW

• Anytime algorithm:

maintain the node with best h found so far (the “incumbent”)

given more time, can improve its incumbent

CPSC 322, Lecture 5 Slide 37

Learning Goals for today’s class – part1

You can:

• Implement local search for a CSP.

• Implement different ways to generate neighbors

• Implement scoring functions to solve a CSP by

local search through either greedy descent or

hill-climbing.

• Implement SLS with

• random steps (1-step, 2-step versions)

• random restart

CPSC 322, Lecture 5 Slide 38

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

Evaluating SLS algorithms
• SLS algorithms are randomized

• The time taken until they solve a problem is a random variable

• It is entirely normal to have runtime variations of 2 orders of

magnitude in repeated runs!

E.g. 0.1 seconds in one run, 10 seconds in the next one

On the same problem instance (only difference: random seed)

Sometimes SLS algorithm doesn’t even terminate at all:

stagnation

• If an SLS algorithm sometimes stagnates, what is its mean

runtime (across many runs)?

• Infinity!

• In practice, one often counts timeouts as some fixed large value X

• Still, summary statistics, such as mean run time or median run

time, don't tell the whole story

 E.g. would penalize an algorithm that often finds a solution quickly but

sometime stagnates

CPSC 322, Lecture 5 Slide 40

Comparing Stochastic Algorithms: Challenge

• Summary statistics, such as mean run time, median run

time, and mode run time don't tell the whole story

• What is the running time for the runs for which an algorithm never
finishes (infinite? stopping time?)

100%

runtime / steps
0 10 20 30 …..

% of solved runs

CPSC 322, Lecture 5 Slide 41

First attempt….

• How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn't

halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve

the rest

C. one solves the problem in 100% of the cases, but slowly?

100%

Mean runtime / steps

of solved runs

% of solved runs

CPSC 322, Lecture 5 Slide 42

Runtime Distributions are even more

effective
Plots runtime (or number of steps) and the proportion (or

number) of the runs that are solved within that runtime.

• log scale on the x axis is commonly used

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps
 Which algorithm is most likely to

solve the problem within 7 steps?

blue green red

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps
 Which algorithm is most likely to

solve the problem within 7 steps?

red

Comparing runtime distributions
• Which algorithm has the best median performance?

• I.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

blue

Comparing runtime distributions
• Which algorithm has the best median performance?

• I.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

blue green red

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

 28% solved

after 10 steps,

then stagnate

 57% solved

after 80 steps,

then stagnate

 Slow, but does

not stagnate Crossover point:

if we run longer than 80

steps, green is the

best algorithm

 If we run less than

10 steps, red is the

best algorithm

Runtime distributions in AIspace

• Let’s look at some algorithms and their runtime

distributions:

1. Greedy Descent

2. Random Sampling

3. Random Walk

4. Greedy Descent with random walk

• Simple scheduling problem 2 in AIspace:

CPSC 322, Lecture 5 Slide 49

Runtime Distributions

100%

time t

% of solved runs

Which one would you use if you could wait

• t = t1 ?

• t = t2 ?

• t = t3 ?

CPSC 322, Lecture 5 Slide 50

What are we going to look at in AIspace

When selecting a variable first
followed by a value:

• Sometimes select variable:
1. that participates in the

largest number of conflicts.

2. at random, any variable that
participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

AIspace terminology

Random sampling

Random walk

Greedy Descent

Greedy Descent Min
conflict

Greedy Descent with
random walk

Greedy Descent with
random restart …..

CPSC 322, Lecture 5 Slide 51

Stochastic Local Search

• Key Idea: combine greedily improving moves with

randomization

• As well as improving steps we can allow a “small

probability” of:

• Random steps: move to a random neighbor.

• Random restart: reassign random values to all

variables.

• Stop when

• Solution is found (in vanilla CSP …………………………)

• Run out of time (return best solution so far)

• Always keep best solution found so far

CPSC 322, Lecture 5 Slide 52

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 53

Tabu lists

• To avoid search to

• Immediately going back to previously visited candidate

• To prevent cycling

• Maintain a tabu list of the k last nodes visited.

• Don't visit a poss. world that is already on the tabu list.

• Cost of this method depends on…..

CPSC 322, Lecture 5 Slide 54

Simulated Annealing

• Annealing: a metallurgical process where metals

are hardened by being slowly cooled.

• Analogy: start with a high ``temperature'': a high

tendency to take random steps

• Over time, cool down: more likely to follow the scoring

function

• Temperature reduces over time, according to an

annealing schedule

• Key idea: Change the degree of randomness….

CPSC 322, Lecture 5 Slide 55

Simulated Annealing: algorithm

Here's how it works (for maximizing):
• You are in node n. Pick a variable at random and a

new value at random. You generate n'

• If it is an improvement i.e., , adopt it.

• If it isn't an improvement, adopt it probabilistically

depending on the difference and a temperature

parameter, T.

• we move to n' with probability e(h(n')-h(n))/T

CPSC 322, Lecture 5 Slide 56

• If it isn't an improvement, adopt it probabilistically

depending on the difference and a temperature

parameter, T.

• we move to n' with probability e(h(n')-h(n))/T

CPSC 322, Lecture 5 Slide 57

Properties of simulated annealing search

One can prove: If T decreases slowly enough, then

simulated annealing search will find a global

optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.

CPSC 322, Lecture 5 Slide 58

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 59

Population Based SLS

Often we have more memory than the one required

for current node (+ best so far + tabu list)

Key Idea: maintain a population of k individuals

• At every stage, update your population.

• Whenever one individual is a solution, report it.

Simplest strategy: Parallel Search

• All searches are independent

• Like k restarts

CPSC 322, Lecture 5 Slide 60

Population Based SLS: Beam Search
Non Stochastic

• Like parallel search, with k individuals, but you

choose the k best out of all of the neighbors.

• Useful information is passed among the k parallel

search thread

• Troublesome case: If one individual generates several

good neighbors and the other k-1 all generate bad

successors….

CPSC 322, Lecture 5 Slide 61

Population Based SLS: Stochastic

Beam Search
• Non Stochastic Beam Search may suffer from

lack of diversity among the k individual (just a more

expensive hill climbing)

• Stochastic version alleviates this problem:

• Selects the k individuals at random

• But probability of selection proportional to their value
(according to scoring function)

CPSC 322, Lecture 5 Slide 62

Stochastic Beam Search: Advantages

• It maintains diversity in the population.

• Biological metaphor (asexual reproduction):

each individual generates “mutated” copies of itself (its

neighbors)

The scoring function value reflects the fitness of the

individual

the higher the fitness the more likely the individual will

survive (i.e., the neighbor will be in the next generation)

CPSC 322, Lecture 5 Slide 63

Population Based SLS: Genetic Algorithms
• Start with k randomly generated individuals

(population)

• An individual is represented as a string over a finite
alphabet (often a string of 0s and 1s)

• A successor is generated by combining two parent
individuals (loosely analogous to how DNA is spliced in
sexual reproduction)

• Evaluation/Scoring function (fitness function). Higher

values for better individuals.

• Produce the next generation of individuals by
selection, crossover, and mutation

CPSC 322, Lecture 5
Slide 64

Genetic algorithms: Example

Representation and fitness function

State: string over finite alphabet

Fitness function: higher value

better states

CPSC 322, Lecture 5 Slide 65

Genetic algorithms: Example

24/(24+23+20+11) = 31%

23/(24+23+20+11) = 29% etc

Selection: common strategy, probability of

being chosen for reproduction is directly

proportional to fitness score

CPSC 322, Lecture 5 Slide 66

Genetic algorithms: Example

Reproduction: cross-over and mutation

CPSC 322, Lecture 5 Slide 67

Genetic Algorithms: Conclusions

• Their performance is very sensitive to the choice

of state representation and fitness function

• Extremely slow (not surprising as they are

inspired by evolution!)

CPSC 322, Lecture 5 Slide 68

Learning Goals for today’s class part-2

You can:

• Compare SLS algorithms with runtime

distributions

• Implement a tabu-list.

• Implement the simulated annealing algorithm

• Implement population based SLS algorithms:
• Beam Search

• Genetic Algorithms.

• Explain pros and cons of different SLS algorithms .

CPSC 322, Lecture 5 Slide 69

Modules we'll cover in this course: R&Rsys

Environment

Problem

Query

Planning

Deterministic Stochastic

Search

Arc Consistency

Search

Search
Value Iteration

Var. Elimination

Constraint
Satisfaction

Logics

STRIPS

Belief Nets

Vars +
Constraints

Decision Nets

Markov Processes

Var. Elimination

Static

Sequential

Representation

Reasoning

Technique

SLS

CPSC 322, Lecture 5 Slide 70

Next class

• Planning (Chp 8.1-8.2, 8.4): How to select

and organize a sequence of actions to

achieve a given goal…

• Start Logics (Chp 5-1-5.3)

Posted on WebCT

• Assignment2 on CSPs (due on Thurs!)

CPSC 322, Lecture 5 Slide 71

Sampling a discrete probability

distribution

CPSC 322, Lecture 5 Slide 72

Systematically solving CSPs: Summary

• Build Constraint Network

• Apply Arc Consistency

• One domain is empty

• Each domain has a single value

• Some domains have more than one value

• Apply Depth-First Search with Pruning

• Split the problem in a number of disjoint cases

• Apply Arc Consistency to each case

CPSC 322, Lecture 5 Slide 73

CSPs summary

Find a single variable assignment that satisfies all of our

constraints (atemporal)

• Systematic Search approach (search space …..?)

• Constraint network support

 inference e.g., Arc Consistency (can tell you if solution does not exist)

Decomposition

• Heuristic Search (degree, min-remaining)

• (Stochastic) Local Search (search space …..?)

• Huge search spaces and highly connected constraint network

but solutions densely distributed

• No guarantee to find a solution (if one exists).

• Unable to show that no solution exists

• Solving CSPs is NP-hard

- Search space for many CSPs is huge

- Exponential in the number of variables

- Even arc consistency with domain splitting is often not enough

• Alternative: local search

• use algorithms that search the space locally, rather than

systematically

• Often finds a solution quickly, but are not guaranteed to find a

solution if one exists (thus, cannot prove that there is no solution)

Local Search: Motivation

Local Search Problem: Definition

75

Definition: A local search problem consists of a:

CSP: a set of variables, domains for these variables, and constraints

on their joint values.

A node in the search space will be a complete assignment to all of the

variables.

Neighbour relation: an edge in the search space will exist

when the neighbour relation holds between a pair of nodes.

Scoring function: h(n), judges cost of a node (want to minimize)

 - E.g. the number of constraints violated in node n.

 - E.g. the cost of a state in an optimization context.

• Given the set of variables {V1 ….,Vn }, each with

domain Dom(Vi)

• The start node is any assignment {V1 / v1,…,Vn / vn } .

• The neighbors of node with assignment

 A= {V1 / v1,…,Vn / vn }

 are nodes with assignments that differ from A for one

value only

Example

V1 = v1 ,V2 = v1 ,.., Vn = v1

Search Space

V1 = v2 ,V2 = v1 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v1

V1 = v1 ,V2 = vn ,.., Vn = v1

V1 = v4 ,V2 = v2 ,.., Vn = v1

V1 = v4 ,V2 = v3 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v2

• Only the current node is kept in memory at each step.

• Very different from the systematic tree search approaches we

 have seen so far!

• Local search does NOT backtrack!

