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Course Announcements 

Posted on WebCT 

• Assignment2  on CSPs (due on Thurs!) 

If you are confused about basic CSPs….. Check learning 

goals at the end of lectures. Please come to office hours 

 

• Work on CSPs Practice Ex: 
• Exercise 4.A: arc consistency 

• Exercise 4.B: constraint satisfaction problems 

• Exercise 4.C: SLS for CSP 

 

 • MIDTERM: Mon May 28th – 3PM (room TBA) 
 

http://www.aispace.org/exercises/exercise4-a-1.shtml
http://www.aispace.org/exercises/exercise4-b-1.shtml
http://www.aispace.org/exercises/exercise4-c-2.shtml
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Systematically solving CSPs: Summary 

• Build Constraint Network 

• Apply Arc Consistency  

• One domain is empty  

• Each domain has a single value  

• Some domains have more than one value  

 

 

• Apply Depth-First Search with Pruning 

• Split the problem in a number of disjoint cases 

• Apply Arc Consistency to each case 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Local Search motivation: Scale 
• Many CSPs (scheduling, DNA computing, more 

later) are simply too big for systematic approaches 

• If you have   105 vars with dom(vari) = 104  

• but if solutions are densely distributed……. 

• Systematic Search • Constraint Network 
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Local Search: General Method 

Remember , for CSP a solution is….. 

• Start from a possible world 

• Generate some neighbors ( “similar” possible worlds) 

• Move from the current node to a neighbor, selected 

according to a particular strategy 

• Example: A,B,C  same domain {1,2,3} 



CPSC 322, Lecture 5 Slide 7 

Local Search: Selecting Neighbors 

How do we determine the neighbors? 

• Usually this is simple: some small incremental change to 
the variable assignment 

a) assignments that differ in one variable's value, by (for instance) a 
value difference of  +1 

b) assignments that differ in one variable's value 

c) assignments that differ in two variables' values, etc. 

• Example: A,B,C  same domain {1,2,3} 



Iterative Best Improvement 

• How to determine the neighbor node to be selected? 

• Iterative Best Improvement:  

• select the neighbor that optimizes some evaluation 
function 

• Which strategy would make sense? Select neighbor 
with … 

 

 

 

 

 
 

Minimal number of constraint violations 

Similar number of constraint violations as current state 

Maximal number of constraint violations 

No constraint violations 



Iterative Best Improvement 

• How to determine the neighbor node to be selected? 

• Iterative Best Improvement:  

• select the neighbor that optimizes some evaluation 
function 

• Which strategy would make sense? Select 
neighbour with … 

 

 
 

• Evaluation function:  
h(n): number of constraint violations in state n 

• Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n 
with minimal h(n) 

• Hill climbing: equivalent algorithm for maximization problems 

• Here: maximize the number of constraints satisfied 

Minimal number of constraint violations 
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Selecting the best neighbor 

A common component of the scoring function (heuristic)  => 

select the neighbor that results in the …… 

 

- the min conflicts heuristics 

 

• Example: A,B,C  same domain {1,2,3} , (A=B, A>1, C≠3)   



Example: N-Queens 

• Put n queens on an n × n board with no two 

queens on the same row, column, or diagonal 

(i.e attacking each other) 

 

 

 

 

• Positions a queen 

can attack 



Example: N-queen as a local search problem 

CSP: N-queen CSP 
- One variable per column; domains {1,…,N} => row where 

the queen in the ith column seats;  

- Constraints:  no two queens in the same row, column or 
diagonal 

Neighbour relation: value of a single column differs 

Scoring function: number of constraint violations (i..e, 
number of  

                             attacks) 
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Example: n-queens 
Put n queens on an n × n board with no two queens on 

the same row, column, or diagonal (i.e attacking each other) 



Example: Greedy descent for N-Queen 
For each column, assign randomly each queen to a row 

   (a number between 1 and N) 

Repeat 

• For each column & each number: Evaluate how many 

constraint violations changing the assignment would 

yield 

• Choose the column and number that leads to the 

fewest violated constraints; change it 

Until solved 

                          



15 

h = 5 h = ?     h = ? 

3 1 0 2 
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n-queens, Why? 

Why this problem?   

Lots of research in the 90’ on local search for CSP 

was generated by the observation that  the run-

time of local search on n-queens problems is 

independent of problem size! 
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Lecture Overview 

• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Constrained Optimization Problems  

So far we have assumed that we just want to find a 

possible world that satisfies all the constraints. 

But sometimes solutions may have different values / 

costs 

• We want to find the optimal solution that  

• maximizes the value or 

• minimizes the cost 
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Constrained Optimization Example 

Hill Climbing means selecting the neighbor which best 

improves a (value-based) scoring function. 

Greedy Descent means selecting the neighbor which 

minimizes a (cost-based) scoring function. 

 

 

 

The scoring function we’d like to maximize might be: 

f(n) = (C + A) +  #-of-satisfied-const  

 

• Example: A,B,C  same domain {1,2,3} , (A=B, A>1, C≠3) 

• Value = (C+A) so we want a solution that maximize that   
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Hill Climbing 

NOTE: Everything that will be said for Hill 

Climbing is also true for Greedy Descent 
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Problems with Hill Climbing 

Local Maxima. 

Plateau - Shoulders 

 

 
(Plateau) 
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Corresponding problem for GreedyDescent 

Local minimum example: 8-queens problem 

 

A local minimum with h = 1 



CPSC 322, Lecture 5 Slide 23 

Even more Problems in higher dimensions 
 

E.g., Ridges – sequence of local maxima not 

directly connected to each other  

From each local maximum you can only 

     go downhill 
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Lecture Overview 

• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Local Search: Summary 

• A useful method in practice for large CSPs 

• Start from a possible world 

 

• Generate some neighbors ( “similar” possible worlds) 

 

• Move from current node to a neighbor, selected to 

minimize/maximize a scoring function which combines: 

 Info about how many constraints are violated 

 Information about the cost/quality of the solution (you want the 

best solution, not just a solution) 
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Stochastic Local Search 

GOAL: We want our local search  

• to be guided by the scoring function 

• Not to get stuck in local maxima/minima, plateaus etc. 

 

• SOLUTION: We can alternate  
a) Hill-climbing steps 

b) Random steps: move to a random neighbor. 

c) Random restart: reassign random values to all 
variables. 



 

Which randomized method would work best in each of 

these two search spaces?  

 

Greedy descent with random steps best on A 

Greedy descent with random restart best on B 

 Greedy descent with random steps best on B 

Greedy descent with random restart best on A 

 equivalent 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  

(1 variable) 

A B 



• But these examples are simplified extreme cases for illustration 

- in practice, you don’t know what your search space looks like 

 

• Usually integrating both kinds of randomization works best  

 

Greedy descent with random steps best on B 

Greedy descent with random restart best on A 

 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  

(1 variable) 

A B 

 

Which randomized method would work best in each of 

the these two search spaces?  
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Random Steps (Walk) 

Let’s assume that neighbors are generated as 
• assignments that differ in one variable's value 

How many neighbors there are given n variables with 
domains with d values? 

One strategy to add randomness to the 
selection variable-value pair. 
Sometimes choose the pair 

• According to the scoring function 

• A random one 
 E.G in 8-queen 

• How many neighbors? 

• …….. 
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Random Steps (Walk): two-step 

Another strategy: select a variable first, then  a value: 

• Sometimes select variable: 
1.  that participates in the largest number of conflicts. 

2.  at random, any variable that participates in some conflict. 

3.  at random 

• Sometimes choose value 
a) That minimizes # of conflicts 

b) at random 

 

0 

2 

2 

3 

3 

2 

3 Aispace 

2 a: Greedy Descent with 
Min-Conflict Heuristic 
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Successful application of SLS 

• Scheduling of Hubble Space Telescope: 

reducing time to schedule 3 weeks of 

observations: 

 from one week to around 10 sec. 
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Example: SLS for RNA secondary structure design 
RNA strand made up of four bases: cytosine 
(C), guanine (G), adenine (A), and uracil (U) 

2D/3D structure RNA strand folds into  
is important for its function 

Predicting structure for a  
strand is “easy”: O(n3) 

But what if we want a strand that folds  
into a certain structure? 

• Local search over strands 

 Search for one that folds  
into the right structure 

• Evaluation function for a strand 

 Run O(n3) prediction algorithm 

 Evaluate how different the result is  
from our target structure 

 Only defined implicitly, but can be  
evaluated by running the prediction algorithm 

RNA strand 
GUCCCAUAGGAUGUCCCAUAGGA 

Secondary structure 

Easy Hard 

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC 

[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004] 

 CPSC 322, Lecture 1 



CSP/logic: formal verification 

33 

 

 

 

 

 

 

  Hardware verification                      Software verification 

            (e.g., IBM)                     (small to medium programs) 

 

Most progress in the last 10 years based on: 

    Encodings into propositional satisfiability (SAT) 
CPSC 322, Lecture 1 
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(Stochastic) Local search advantage: 

Online setting 
• When the problem can change (particularly 

important in scheduling) 

• E.g., schedule for airline: thousands of flights and 

thousands of personnel assignment 

• Storm can render the schedule infeasible 

• Goal: Repair with minimum number of changes 

• This can be easily done with a local search starting 

form the current schedule 

• Other techniques usually: 

• require more time  

• might find solution requiring many more changes 



SLS limitations 

• Typically no guarantee to find a solution even if one exists 

• SLS algorithms can sometimes stagnate 

Get caught in one region of the search space and never terminate 

• Very hard to analyze theoretically 

 

• Not able to show that no solution exists 

• SLS simply won’t terminate 

• You don’t know whether the problem is infeasible or the 

algorithm has stagnated 

 

 

 



SLS Advantage: anytime algorithms 

• When should the algorithm be  stopped ? 

• When  a  solution is found  

(e.g. no constraint violations) 

• Or when we are out of time: you have to act NOW   

• Anytime algorithm:  

maintain the node with best h found so far (the “incumbent”)  

given more time, can improve its incumbent 
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Learning Goals for today’s class – part1 

You can: 

• Implement local search for a CSP.  

• Implement different ways to generate neighbors 

• Implement scoring functions to solve a CSP by  

local search through either greedy descent or 

hill-climbing. 

• Implement SLS with 

• random steps (1-step, 2-step versions) 

• random restart 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 

 

 



Evaluating SLS algorithms 
• SLS algorithms are randomized 

• The time taken until they solve a problem is a random variable 

• It is entirely normal to have runtime variations of 2 orders of 

magnitude in repeated runs! 

E.g. 0.1 seconds in one run, 10 seconds in the next one 

On the same problem instance (only difference: random seed) 

Sometimes SLS algorithm doesn’t even terminate at all: 

stagnation 

 

• If an SLS algorithm sometimes stagnates, what is its mean 

runtime (across many runs)? 

• Infinity! 

• In practice, one often counts timeouts as some fixed large value X 

• Still, summary statistics, such as mean run time or median run 

time, don't tell the whole story 

 E.g. would penalize an algorithm that often finds  a solution quickly but 

sometime stagnates 
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Comparing Stochastic Algorithms: Challenge 

• Summary statistics, such as mean run time, median run 

time, and mode run time don't tell the whole story 

• What is the running time for the runs for which an algorithm never  
finishes (infinite? stopping time?) 

100% 

runtime / steps 
0 10 20 30 ….. 

% of solved runs 
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First attempt…. 

• How can you compare three algorithms when 

A. one solves the problem 30% of the time very quickly but doesn't 

halt for the other 70% of the cases 

B. one solves 60% of the cases reasonably quickly but doesn't solve 

the rest 

C. one solves the problem in 100% of the cases, but slowly? 

100% 

Mean runtime / steps 

of solved runs 

% of solved runs 
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Runtime Distributions are even more 

effective 
Plots runtime (or number of steps) and the proportion (or 

number) of the runs that are solved within that runtime. 

• log scale on the x axis is commonly used 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 
     Which algorithm is most likely to 

solve the problem within 7 steps? 

 

blue green red 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 
     Which algorithm is most likely to 

solve the problem within 7 steps? 

 

red 



Comparing runtime distributions 
• Which algorithm has the best median performance? 

• I.e., which algorithm takes the fewest number of steps to be 

successful in 50% of the cases? 

 

 

 
Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

blue 



Comparing runtime distributions 
• Which algorithm has the best median performance? 

• I.e., which algorithm takes the fewest number of steps to be 

successful in 50% of the cases? 

 

 

 
Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

blue green red 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

      28% solved  

after 10 steps, 

then stagnate 

      57% solved  

after 80 steps, 

then stagnate 

      Slow, but does 

not stagnate       Crossover point: 

if we run longer than 80 

steps, green is the  

best algorithm 

       If we run less than 

10 steps, red is the 

best algorithm 



Runtime distributions in AIspace 

 

• Let’s look at some algorithms and their runtime 

distributions: 

1. Greedy Descent 

2. Random Sampling 

3. Random Walk 

4. Greedy Descent with random walk 

 

• Simple scheduling problem 2 in AIspace: 
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Runtime Distributions 

100% 

time t 

% of solved runs 

Which one would you use if you could wait  

• t = t1 ? 

• t = t2 ? 

• t = t3 ? 
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What are we going to look at in AIspace 

When selecting a variable first 
followed by a value: 

• Sometimes select variable: 
1.  that participates in the 

largest number of conflicts. 

2.  at random, any variable that 
participates in some conflict. 

3.  at random 

• Sometimes choose value 
a) That minimizes # of conflicts 

b) at random 

 

AIspace terminology 

Random sampling 

Random walk 

Greedy Descent 

Greedy Descent Min 
conflict 

Greedy Descent with 
random walk 

Greedy Descent with 
random restart ….. 



CPSC 322, Lecture 5 Slide 51 

Stochastic Local Search 

• Key Idea: combine greedily improving moves with 

randomization 

• As well as improving steps we can allow a “small 

probability” of: 

• Random steps: move to a random neighbor. 

• Random restart: reassign random values to all 

variables. 

• Stop when 

• Solution is found (in vanilla CSP …………………………) 

• Run out of time (return best solution so far) 

• Always keep best solution found so far 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Tabu lists 

• To avoid  search to 

• Immediately going back to previously visited candidate 

• To prevent cycling  

• Maintain a tabu list of the k last nodes visited. 

• Don't visit a poss. world that is already on the tabu list. 

• Cost of this method depends on….. 
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Simulated Annealing 

• Annealing: a metallurgical process where metals 

are hardened by being slowly cooled. 

• Analogy: start with a high ``temperature'': a high 

tendency to take random steps 

• Over time, cool down: more likely to follow the scoring 

function 

• Temperature reduces over time, according to an 

annealing schedule 

• Key idea: Change the degree of randomness…. 
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Simulated Annealing: algorithm 

Here's how it works (for maximizing): 
• You are in node n. Pick a variable at random and a 

new value at random. You generate n'  

• If it is an improvement i.e.,                          , adopt it. 

• If it isn't an improvement, adopt it probabilistically 

depending on the difference and a temperature 

parameter, T. 

• we move to n'  with probability e(h(n')-h(n))/T 
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• If it isn't an improvement, adopt it probabilistically 

depending on the difference and a temperature 

parameter, T. 

• we move to n'  with probability e(h(n')-h(n))/T 
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Properties of simulated annealing search 

One can prove: If T decreases slowly enough, then 

simulated annealing search will find a global 

optimum with probability approaching 1 

 

Widely used in VLSI layout, airline scheduling, etc. 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Population Based SLS 

Often we have more memory than the one required 

for current node (+ best so far + tabu list) 

Key Idea: maintain a population of k  individuals 

• At every stage, update your population. 

• Whenever one individual is a solution, report it. 

Simplest strategy: Parallel Search 

• All searches are independent 

• Like k  restarts 
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Population Based SLS: Beam Search 
Non Stochastic 

• Like parallel search, with k individuals, but you 

choose the k best out of all of the neighbors. 

• Useful information is passed among the k parallel 

search thread 

 

 

 

• Troublesome case: If one individual generates several 

good neighbors and the other k-1 all generate bad 

successors…. 
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Population Based SLS: Stochastic 

Beam Search 
• Non Stochastic Beam Search may suffer from 

lack of diversity among the k individual (just a more 

expensive hill climbing) 

• Stochastic version alleviates this problem: 

• Selects the k individuals at random 

• But probability of selection proportional to their value 
(according to scoring function) 

 



CPSC 322, Lecture 5 Slide 62 

Stochastic Beam Search: Advantages 

• It maintains diversity in the population. 

• Biological metaphor (asexual reproduction):  

each individual generates  “mutated” copies of itself (its 

neighbors) 

The scoring function value reflects the fitness of the 

individual 

the higher the fitness the more likely the individual will 

survive (i.e., the neighbor will be in the next generation) 
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Population Based SLS: Genetic Algorithms 
• Start with k randomly generated individuals 

(population) 
 

• An individual is represented as a string over a finite 
alphabet (often a string of 0s and 1s) 
 

• A successor is generated by combining two parent 
individuals (loosely analogous to how DNA is spliced in 
sexual reproduction) 

 
• Evaluation/Scoring function (fitness function). Higher 

values for better individuals. 
 

• Produce the next generation of individuals by 
selection, crossover, and mutation 
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Genetic algorithms: Example 

Representation and fitness function 

 

State: string over finite alphabet 

 
Fitness function: higher value 

better states 
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Genetic algorithms: Example 

24/(24+23+20+11) = 31% 

23/(24+23+20+11) = 29% etc 

Selection: common strategy, probability of 

being chosen for reproduction is directly 

proportional to fitness score 
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Genetic algorithms: Example 

Reproduction: cross-over and mutation 
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Genetic Algorithms: Conclusions 

• Their performance is very sensitive to the choice 

of state representation and fitness function 

• Extremely slow (not surprising as they are 

inspired by evolution!) 
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Learning Goals for today’s class part-2 

You can: 

• Compare SLS algorithms with runtime 

distributions 

• Implement a tabu-list.  

• Implement the simulated annealing algorithm  

• Implement population based SLS algorithms:  
• Beam Search  

• Genetic Algorithms.  

• Explain pros and cons of different SLS algorithms . 
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Modules we'll cover in this course: R&Rsys 

Environment 

Problem 

Query 

Planning 

Deterministic Stochastic 

Search 

Arc Consistency 

Search 

Search 
Value Iteration 

Var. Elimination 

Constraint 
Satisfaction 

Logics 

STRIPS 

Belief Nets 

Vars +  
Constraints 

Decision Nets 

Markov Processes 

Var. Elimination 

Static 

Sequential 

Representation 

Reasoning 

Technique 

SLS 
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Next class 
 

 

 

• Planning (Chp  8.1-8.2, 8.4): How to select 

and organize a sequence of actions to 

achieve a given goal… 

• Start Logics (Chp 5-1-5.3) 

Posted on WebCT 

• Assignment2  on CSPs (due on Thurs!) 
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Sampling a discrete probability 

distribution 
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Systematically solving CSPs: Summary 

• Build Constraint Network 

• Apply Arc Consistency  

• One domain is empty  

• Each domain has a single value  

• Some domains have more than one value  

 

 

• Apply Depth-First Search with Pruning 

• Split the problem in a number of disjoint cases 

• Apply Arc Consistency to each case 
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CSPs summary 

Find a single variable assignment that satisfies all of our 

constraints (atemporal) 

• Systematic Search approach (search space …..?) 

• Constraint network support  

 inference e.g., Arc Consistency (can tell you if solution does not exist) 

Decomposition 

• Heuristic Search (degree, min-remaining) 

• (Stochastic) Local Search (search space …..?) 

• Huge search spaces and highly connected constraint network 

but solutions densely distributed  

• No guarantee to find a solution (if one exists). 

• Unable to show that no solution exists 

 



•  Solving CSPs is NP-hard 

- Search space for many CSPs is huge 

- Exponential in the number of variables 

- Even arc consistency with domain splitting is often not enough 

 

•  Alternative: local search 

• use algorithms that search the space locally, rather than 

systematically 

• Often finds a solution quickly, but are not guaranteed to find a 

solution if one exists (thus, cannot prove that there is no solution) 

 
 

 

Local Search: Motivation 



Local Search Problem: Definition 

75 

Definition: A local search problem consists of a: 

 

CSP: a set of variables, domains for these variables, and constraints 

on their joint values.  

 

A node in the search space will be a complete assignment to all of the 

variables. 

 

Neighbour relation: an edge in the search space will exist 

when the neighbour relation holds between a pair of nodes. 

 

Scoring function: h(n), judges cost of a node (want to minimize)  

   -   E.g. the number of constraints violated in node n.  

   -   E.g. the cost of a state in an optimization context. 

 



 
 

•  Given the set of variables {V1 ….,Vn }, each with 

domain Dom(Vi) 

• The start node is any assignment {V1 / v1,…,Vn / vn } . 
  

• The neighbors of node with assignment  

          A= {V1 / v1,…,Vn / vn }  

    are nodes with assignments that differ from A for one 

value only 
 

Example 

 



V1 = v1 ,V2 = v1 ,.., Vn = v1 

Search Space 

V1 = v2 ,V2 = v1 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v1 

V1 = v1 ,V2 = vn ,.., Vn = v1 

V1 = v4 ,V2 = v2 ,.., Vn = v1 

V1 = v4 ,V2 = v3 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v2 

•  Only the current node is kept in memory at each step.  

•   Very different from the systematic tree search approaches we      

    have seen so far!  

•   Local search does NOT backtrack! 


