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Course Announcements 

Posted on WebCT 

• Assignment2  on CSPs (due on Thurs!) 

If you are confused about basic CSPs….. Check learning 

goals at the end of lectures. Please come to office hours 

 

• Work on CSPs Practice Ex: 
• Exercise 4.A: arc consistency 

• Exercise 4.B: constraint satisfaction problems 

• Exercise 4.C: SLS for CSP 

 

 • MIDTERM: Mon May 28th – 3PM (room TBA) 
 

http://www.aispace.org/exercises/exercise4-a-1.shtml
http://www.aispace.org/exercises/exercise4-b-1.shtml
http://www.aispace.org/exercises/exercise4-c-2.shtml
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Systematically solving CSPs: Summary 

• Build Constraint Network 

• Apply Arc Consistency  

• One domain is empty  

• Each domain has a single value  

• Some domains have more than one value  

 

 

• Apply Depth-First Search with Pruning 

• Split the problem in a number of disjoint cases 

• Apply Arc Consistency to each case 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Local Search motivation: Scale 
• Many CSPs (scheduling, DNA computing, more 

later) are simply too big for systematic approaches 

• If you have   105 vars with dom(vari) = 104  

• but if solutions are densely distributed……. 

• Systematic Search • Constraint Network 
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Local Search: General Method 

Remember , for CSP a solution is….. 

• Start from a possible world 

• Generate some neighbors ( “similar” possible worlds) 

• Move from the current node to a neighbor, selected 

according to a particular strategy 

• Example: A,B,C  same domain {1,2,3} 
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Local Search: Selecting Neighbors 

How do we determine the neighbors? 

• Usually this is simple: some small incremental change to 
the variable assignment 

a) assignments that differ in one variable's value, by (for instance) a 
value difference of  +1 

b) assignments that differ in one variable's value 

c) assignments that differ in two variables' values, etc. 

• Example: A,B,C  same domain {1,2,3} 



Iterative Best Improvement 

• How to determine the neighbor node to be selected? 

• Iterative Best Improvement:  

• select the neighbor that optimizes some evaluation 
function 

• Which strategy would make sense? Select neighbor 
with … 

 

 

 

 

 
 

Minimal number of constraint violations 

Similar number of constraint violations as current state 

Maximal number of constraint violations 

No constraint violations 



Iterative Best Improvement 

• How to determine the neighbor node to be selected? 

• Iterative Best Improvement:  

• select the neighbor that optimizes some evaluation 
function 

• Which strategy would make sense? Select 
neighbour with … 

 

 
 

• Evaluation function:  
h(n): number of constraint violations in state n 

• Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n 
with minimal h(n) 

• Hill climbing: equivalent algorithm for maximization problems 

• Here: maximize the number of constraints satisfied 

Minimal number of constraint violations 
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Selecting the best neighbor 

A common component of the scoring function (heuristic)  => 

select the neighbor that results in the …… 

 

- the min conflicts heuristics 

 

• Example: A,B,C  same domain {1,2,3} , (A=B, A>1, C≠3)   



Example: N-Queens 

• Put n queens on an n × n board with no two 

queens on the same row, column, or diagonal 

(i.e attacking each other) 

 

 

 

 

• Positions a queen 

can attack 



Example: N-queen as a local search problem 

CSP: N-queen CSP 
- One variable per column; domains {1,…,N} => row where 

the queen in the ith column seats;  

- Constraints:  no two queens in the same row, column or 
diagonal 

Neighbour relation: value of a single column differs 

Scoring function: number of constraint violations (i..e, 
number of  

                             attacks) 
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Example: n-queens 
Put n queens on an n × n board with no two queens on 

the same row, column, or diagonal (i.e attacking each other) 



Example: Greedy descent for N-Queen 
For each column, assign randomly each queen to a row 

   (a number between 1 and N) 

Repeat 

• For each column & each number: Evaluate how many 

constraint violations changing the assignment would 

yield 

• Choose the column and number that leads to the 

fewest violated constraints; change it 

Until solved 

                          



15 

h = 5 h = ?     h = ? 

3 1 0 2 
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n-queens, Why? 

Why this problem?   

Lots of research in the 90’ on local search for CSP 

was generated by the observation that  the run-

time of local search on n-queens problems is 

independent of problem size! 
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Lecture Overview 

• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Constrained Optimization Problems  

So far we have assumed that we just want to find a 

possible world that satisfies all the constraints. 

But sometimes solutions may have different values / 

costs 

• We want to find the optimal solution that  

• maximizes the value or 

• minimizes the cost 
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Constrained Optimization Example 

Hill Climbing means selecting the neighbor which best 

improves a (value-based) scoring function. 

Greedy Descent means selecting the neighbor which 

minimizes a (cost-based) scoring function. 

 

 

 

The scoring function we’d like to maximize might be: 

f(n) = (C + A) +  #-of-satisfied-const  

 

• Example: A,B,C  same domain {1,2,3} , (A=B, A>1, C≠3) 

• Value = (C+A) so we want a solution that maximize that   
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Hill Climbing 

NOTE: Everything that will be said for Hill 

Climbing is also true for Greedy Descent 
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Problems with Hill Climbing 

Local Maxima. 

Plateau - Shoulders 

 

 
(Plateau) 
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Corresponding problem for GreedyDescent 

Local minimum example: 8-queens problem 

 

A local minimum with h = 1 
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Even more Problems in higher dimensions 
 

E.g., Ridges – sequence of local maxima not 

directly connected to each other  

From each local maximum you can only 

     go downhill 
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Lecture Overview 

• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Local Search: Summary 

• A useful method in practice for large CSPs 

• Start from a possible world 

 

• Generate some neighbors ( “similar” possible worlds) 

 

• Move from current node to a neighbor, selected to 

minimize/maximize a scoring function which combines: 

 Info about how many constraints are violated 

 Information about the cost/quality of the solution (you want the 

best solution, not just a solution) 
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Stochastic Local Search 

GOAL: We want our local search  

• to be guided by the scoring function 

• Not to get stuck in local maxima/minima, plateaus etc. 

 

• SOLUTION: We can alternate  
a) Hill-climbing steps 

b) Random steps: move to a random neighbor. 

c) Random restart: reassign random values to all 
variables. 



 

Which randomized method would work best in each of 

these two search spaces?  

 

Greedy descent with random steps best on A 

Greedy descent with random restart best on B 

 Greedy descent with random steps best on B 

Greedy descent with random restart best on A 

 equivalent 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  

(1 variable) 

A B 



• But these examples are simplified extreme cases for illustration 

- in practice, you don’t know what your search space looks like 

 

• Usually integrating both kinds of randomization works best  

 

Greedy descent with random steps best on B 

Greedy descent with random restart best on A 

 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  

(1 variable) 

A B 

 

Which randomized method would work best in each of 

the these two search spaces?  
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Random Steps (Walk) 

Let’s assume that neighbors are generated as 
• assignments that differ in one variable's value 

How many neighbors there are given n variables with 
domains with d values? 

One strategy to add randomness to the 
selection variable-value pair. 
Sometimes choose the pair 

• According to the scoring function 

• A random one 
 E.G in 8-queen 

• How many neighbors? 

• …….. 
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Random Steps (Walk): two-step 

Another strategy: select a variable first, then  a value: 

• Sometimes select variable: 
1.  that participates in the largest number of conflicts. 

2.  at random, any variable that participates in some conflict. 

3.  at random 

• Sometimes choose value 
a) That minimizes # of conflicts 

b) at random 

 

0 

2 

2 

3 

3 

2 

3 Aispace 

2 a: Greedy Descent with 
Min-Conflict Heuristic 
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Successful application of SLS 

• Scheduling of Hubble Space Telescope: 

reducing time to schedule 3 weeks of 

observations: 

 from one week to around 10 sec. 
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Example: SLS for RNA secondary structure design 
RNA strand made up of four bases: cytosine 
(C), guanine (G), adenine (A), and uracil (U) 

2D/3D structure RNA strand folds into  
is important for its function 

Predicting structure for a  
strand is “easy”: O(n3) 

But what if we want a strand that folds  
into a certain structure? 

• Local search over strands 

 Search for one that folds  
into the right structure 

• Evaluation function for a strand 

 Run O(n3) prediction algorithm 

 Evaluate how different the result is  
from our target structure 

 Only defined implicitly, but can be  
evaluated by running the prediction algorithm 

RNA strand 
GUCCCAUAGGAUGUCCCAUAGGA 

Secondary structure 

Easy Hard 

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC 

[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004] 

 CPSC 322, Lecture 1 



CSP/logic: formal verification 

33 

 

 

 

 

 

 

  Hardware verification                      Software verification 

            (e.g., IBM)                     (small to medium programs) 

 

Most progress in the last 10 years based on: 

    Encodings into propositional satisfiability (SAT) 
CPSC 322, Lecture 1 
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(Stochastic) Local search advantage: 

Online setting 
• When the problem can change (particularly 

important in scheduling) 

• E.g., schedule for airline: thousands of flights and 

thousands of personnel assignment 

• Storm can render the schedule infeasible 

• Goal: Repair with minimum number of changes 

• This can be easily done with a local search starting 

form the current schedule 

• Other techniques usually: 

• require more time  

• might find solution requiring many more changes 



SLS limitations 

• Typically no guarantee to find a solution even if one exists 

• SLS algorithms can sometimes stagnate 

Get caught in one region of the search space and never terminate 

• Very hard to analyze theoretically 

 

• Not able to show that no solution exists 

• SLS simply won’t terminate 

• You don’t know whether the problem is infeasible or the 

algorithm has stagnated 

 

 

 



SLS Advantage: anytime algorithms 

• When should the algorithm be  stopped ? 

• When  a  solution is found  

(e.g. no constraint violations) 

• Or when we are out of time: you have to act NOW   

• Anytime algorithm:  

maintain the node with best h found so far (the “incumbent”)  

given more time, can improve its incumbent 
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Learning Goals for today’s class – part1 

You can: 

• Implement local search for a CSP.  

• Implement different ways to generate neighbors 

• Implement scoring functions to solve a CSP by  

local search through either greedy descent or 

hill-climbing. 

• Implement SLS with 

• random steps (1-step, 2-step versions) 

• random restart 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 

 

 



Evaluating SLS algorithms 
• SLS algorithms are randomized 

• The time taken until they solve a problem is a random variable 

• It is entirely normal to have runtime variations of 2 orders of 

magnitude in repeated runs! 

E.g. 0.1 seconds in one run, 10 seconds in the next one 

On the same problem instance (only difference: random seed) 

Sometimes SLS algorithm doesn’t even terminate at all: 

stagnation 

 

• If an SLS algorithm sometimes stagnates, what is its mean 

runtime (across many runs)? 

• Infinity! 

• In practice, one often counts timeouts as some fixed large value X 

• Still, summary statistics, such as mean run time or median run 

time, don't tell the whole story 

 E.g. would penalize an algorithm that often finds  a solution quickly but 

sometime stagnates 
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Comparing Stochastic Algorithms: Challenge 

• Summary statistics, such as mean run time, median run 

time, and mode run time don't tell the whole story 

• What is the running time for the runs for which an algorithm never  
finishes (infinite? stopping time?) 

100% 

runtime / steps 
0 10 20 30 ….. 

% of solved runs 
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First attempt…. 

• How can you compare three algorithms when 

A. one solves the problem 30% of the time very quickly but doesn't 

halt for the other 70% of the cases 

B. one solves 60% of the cases reasonably quickly but doesn't solve 

the rest 

C. one solves the problem in 100% of the cases, but slowly? 

100% 

Mean runtime / steps 

of solved runs 

% of solved runs 
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Runtime Distributions are even more 

effective 
Plots runtime (or number of steps) and the proportion (or 

number) of the runs that are solved within that runtime. 

• log scale on the x axis is commonly used 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 
     Which algorithm is most likely to 

solve the problem within 7 steps? 

 

blue green red 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 
     Which algorithm is most likely to 

solve the problem within 7 steps? 

 

red 



Comparing runtime distributions 
• Which algorithm has the best median performance? 

• I.e., which algorithm takes the fewest number of steps to be 

successful in 50% of the cases? 

 

 

 
Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

blue 



Comparing runtime distributions 
• Which algorithm has the best median performance? 

• I.e., which algorithm takes the fewest number of steps to be 

successful in 50% of the cases? 

 

 

 
Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

blue green red 



Comparing runtime distributions 

    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 

• Typically use a log scale on the x axis 

 

 

 

Fraction of  

solved runs, i.e. 

 

P(solved by 

    this # of 

steps/time) 

# of steps 

      28% solved  

after 10 steps, 

then stagnate 

      57% solved  

after 80 steps, 

then stagnate 

      Slow, but does 

not stagnate       Crossover point: 

if we run longer than 80 

steps, green is the  

best algorithm 

       If we run less than 

10 steps, red is the 

best algorithm 



Runtime distributions in AIspace 

 

• Let’s look at some algorithms and their runtime 

distributions: 

1. Greedy Descent 

2. Random Sampling 

3. Random Walk 

4. Greedy Descent with random walk 

 

• Simple scheduling problem 2 in AIspace: 
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Runtime Distributions 

100% 

time t 

% of solved runs 

Which one would you use if you could wait  

• t = t1 ? 

• t = t2 ? 

• t = t3 ? 
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What are we going to look at in AIspace 

When selecting a variable first 
followed by a value: 

• Sometimes select variable: 
1.  that participates in the 

largest number of conflicts. 

2.  at random, any variable that 
participates in some conflict. 

3.  at random 

• Sometimes choose value 
a) That minimizes # of conflicts 

b) at random 

 

AIspace terminology 

Random sampling 

Random walk 

Greedy Descent 

Greedy Descent Min 
conflict 

Greedy Descent with 
random walk 

Greedy Descent with 
random restart ….. 
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Stochastic Local Search 

• Key Idea: combine greedily improving moves with 

randomization 

• As well as improving steps we can allow a “small 

probability” of: 

• Random steps: move to a random neighbor. 

• Random restart: reassign random values to all 

variables. 

• Stop when 

• Solution is found (in vanilla CSP …………………………) 

• Run out of time (return best solution so far) 

• Always keep best solution found so far 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Tabu lists 

• To avoid  search to 

• Immediately going back to previously visited candidate 

• To prevent cycling  

• Maintain a tabu list of the k last nodes visited. 

• Don't visit a poss. world that is already on the tabu list. 

• Cost of this method depends on….. 



CPSC 322, Lecture 5 Slide 54 

Simulated Annealing 

• Annealing: a metallurgical process where metals 

are hardened by being slowly cooled. 

• Analogy: start with a high ``temperature'': a high 

tendency to take random steps 

• Over time, cool down: more likely to follow the scoring 

function 

• Temperature reduces over time, according to an 

annealing schedule 

• Key idea: Change the degree of randomness…. 
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Simulated Annealing: algorithm 

Here's how it works (for maximizing): 
• You are in node n. Pick a variable at random and a 

new value at random. You generate n'  

• If it is an improvement i.e.,                          , adopt it. 

• If it isn't an improvement, adopt it probabilistically 

depending on the difference and a temperature 

parameter, T. 

• we move to n'  with probability e(h(n')-h(n))/T 
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• If it isn't an improvement, adopt it probabilistically 

depending on the difference and a temperature 

parameter, T. 

• we move to n'  with probability e(h(n')-h(n))/T 
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Properties of simulated annealing search 

One can prove: If T decreases slowly enough, then 

simulated annealing search will find a global 

optimum with probability approaching 1 

 

Widely used in VLSI layout, airline scheduling, etc. 
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Lecture Overview 
• Local search 

• Constrained Optimization 

• Greedy Descent / Hill Climbing: Problems 

• Stochastic Local Search (SLS) 

• Comparing SLS algorithms 

• SLS variants 

Tabu lists 

Simulated Annealing 

• Population Based 

Beam search 

Genetic Algorithms 
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Population Based SLS 

Often we have more memory than the one required 

for current node (+ best so far + tabu list) 

Key Idea: maintain a population of k  individuals 

• At every stage, update your population. 

• Whenever one individual is a solution, report it. 

Simplest strategy: Parallel Search 

• All searches are independent 

• Like k  restarts 
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Population Based SLS: Beam Search 
Non Stochastic 

• Like parallel search, with k individuals, but you 

choose the k best out of all of the neighbors. 

• Useful information is passed among the k parallel 

search thread 

 

 

 

• Troublesome case: If one individual generates several 

good neighbors and the other k-1 all generate bad 

successors…. 
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Population Based SLS: Stochastic 

Beam Search 
• Non Stochastic Beam Search may suffer from 

lack of diversity among the k individual (just a more 

expensive hill climbing) 

• Stochastic version alleviates this problem: 

• Selects the k individuals at random 

• But probability of selection proportional to their value 
(according to scoring function) 
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Stochastic Beam Search: Advantages 

• It maintains diversity in the population. 

• Biological metaphor (asexual reproduction):  

each individual generates  “mutated” copies of itself (its 

neighbors) 

The scoring function value reflects the fitness of the 

individual 

the higher the fitness the more likely the individual will 

survive (i.e., the neighbor will be in the next generation) 
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Population Based SLS: Genetic Algorithms 
• Start with k randomly generated individuals 

(population) 
 

• An individual is represented as a string over a finite 
alphabet (often a string of 0s and 1s) 
 

• A successor is generated by combining two parent 
individuals (loosely analogous to how DNA is spliced in 
sexual reproduction) 

 
• Evaluation/Scoring function (fitness function). Higher 

values for better individuals. 
 

• Produce the next generation of individuals by 
selection, crossover, and mutation 
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Genetic algorithms: Example 

Representation and fitness function 

 

State: string over finite alphabet 

 
Fitness function: higher value 

better states 
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Genetic algorithms: Example 

24/(24+23+20+11) = 31% 

23/(24+23+20+11) = 29% etc 

Selection: common strategy, probability of 

being chosen for reproduction is directly 

proportional to fitness score 
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Genetic algorithms: Example 

Reproduction: cross-over and mutation 
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Genetic Algorithms: Conclusions 

• Their performance is very sensitive to the choice 

of state representation and fitness function 

• Extremely slow (not surprising as they are 

inspired by evolution!) 
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Learning Goals for today’s class part-2 

You can: 

• Compare SLS algorithms with runtime 

distributions 

• Implement a tabu-list.  

• Implement the simulated annealing algorithm  

• Implement population based SLS algorithms:  
• Beam Search  

• Genetic Algorithms.  

• Explain pros and cons of different SLS algorithms . 
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Modules we'll cover in this course: R&Rsys 

Environment 

Problem 

Query 

Planning 

Deterministic Stochastic 

Search 

Arc Consistency 

Search 

Search 
Value Iteration 

Var. Elimination 

Constraint 
Satisfaction 

Logics 

STRIPS 

Belief Nets 

Vars +  
Constraints 

Decision Nets 

Markov Processes 

Var. Elimination 

Static 

Sequential 

Representation 

Reasoning 

Technique 

SLS 
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Next class 
 

 

 

• Planning (Chp  8.1-8.2, 8.4): How to select 

and organize a sequence of actions to 

achieve a given goal… 

• Start Logics (Chp 5-1-5.3) 

Posted on WebCT 

• Assignment2  on CSPs (due on Thurs!) 
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Sampling a discrete probability 

distribution 
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Systematically solving CSPs: Summary 

• Build Constraint Network 

• Apply Arc Consistency  

• One domain is empty  

• Each domain has a single value  

• Some domains have more than one value  

 

 

• Apply Depth-First Search with Pruning 

• Split the problem in a number of disjoint cases 

• Apply Arc Consistency to each case 
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CSPs summary 

Find a single variable assignment that satisfies all of our 

constraints (atemporal) 

• Systematic Search approach (search space …..?) 

• Constraint network support  

 inference e.g., Arc Consistency (can tell you if solution does not exist) 

Decomposition 

• Heuristic Search (degree, min-remaining) 

• (Stochastic) Local Search (search space …..?) 

• Huge search spaces and highly connected constraint network 

but solutions densely distributed  

• No guarantee to find a solution (if one exists). 

• Unable to show that no solution exists 

 



•  Solving CSPs is NP-hard 

- Search space for many CSPs is huge 

- Exponential in the number of variables 

- Even arc consistency with domain splitting is often not enough 

 

•  Alternative: local search 

• use algorithms that search the space locally, rather than 

systematically 

• Often finds a solution quickly, but are not guaranteed to find a 

solution if one exists (thus, cannot prove that there is no solution) 

 
 

 

Local Search: Motivation 



Local Search Problem: Definition 

75 

Definition: A local search problem consists of a: 

 

CSP: a set of variables, domains for these variables, and constraints 

on their joint values.  

 

A node in the search space will be a complete assignment to all of the 

variables. 

 

Neighbour relation: an edge in the search space will exist 

when the neighbour relation holds between a pair of nodes. 

 

Scoring function: h(n), judges cost of a node (want to minimize)  

   -   E.g. the number of constraints violated in node n.  

   -   E.g. the cost of a state in an optimization context. 

 



 
 

•  Given the set of variables {V1 ….,Vn }, each with 

domain Dom(Vi) 

• The start node is any assignment {V1 / v1,…,Vn / vn } . 
  

• The neighbors of node with assignment  

          A= {V1 / v1,…,Vn / vn }  

    are nodes with assignments that differ from A for one 

value only 
 

Example 

 



V1 = v1 ,V2 = v1 ,.., Vn = v1 

Search Space 

V1 = v2 ,V2 = v1 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v1 

V1 = v1 ,V2 = vn ,.., Vn = v1 

V1 = v4 ,V2 = v2 ,.., Vn = v1 

V1 = v4 ,V2 = v3 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v2 

•  Only the current node is kept in memory at each step.  

•   Very different from the systematic tree search approaches we      

    have seen so far!  

•   Local search does NOT backtrack! 


