
CPSC 322, Lecture 5 Slide 1

(Stochastic) Local Search
Computer Science cpsc322, Lecture 5

(Textbook Chpt 4.8-4.9)

May, 22, 2012

CPSC 322, Lecture 5 Slide 2

Course Announcements

Posted on WebCT

• Assignment2 on CSPs (due on Thurs!)

If you are confused about basic CSPs….. Check learning

goals at the end of lectures. Please come to office hours

• Work on CSPs Practice Ex:
• Exercise 4.A: arc consistency

• Exercise 4.B: constraint satisfaction problems

• Exercise 4.C: SLS for CSP

 • MIDTERM: Mon May 28th – 3PM (room TBA)

http://www.aispace.org/exercises/exercise4-a-1.shtml
http://www.aispace.org/exercises/exercise4-b-1.shtml
http://www.aispace.org/exercises/exercise4-c-2.shtml

CPSC 322, Lecture 5 Slide 3

Systematically solving CSPs: Summary

• Build Constraint Network

• Apply Arc Consistency

• One domain is empty 

• Each domain has a single value 

• Some domains have more than one value 

• Apply Depth-First Search with Pruning

• Split the problem in a number of disjoint cases

• Apply Arc Consistency to each case

CPSC 322, Lecture 5 Slide 4

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 5

Local Search motivation: Scale
• Many CSPs (scheduling, DNA computing, more

later) are simply too big for systematic approaches

• If you have 105 vars with dom(vari) = 104

• but if solutions are densely distributed…….

• Systematic Search • Constraint Network

CPSC 322, Lecture 5 Slide 6

Local Search: General Method

Remember , for CSP a solution is…..

• Start from a possible world

• Generate some neighbors (“similar” possible worlds)

• Move from the current node to a neighbor, selected

according to a particular strategy

• Example: A,B,C same domain {1,2,3}

CPSC 322, Lecture 5 Slide 7

Local Search: Selecting Neighbors

How do we determine the neighbors?

• Usually this is simple: some small incremental change to
the variable assignment

a) assignments that differ in one variable's value, by (for instance) a
value difference of +1

b) assignments that differ in one variable's value

c) assignments that differ in two variables' values, etc.

• Example: A,B,C same domain {1,2,3}

Iterative Best Improvement

• How to determine the neighbor node to be selected?

• Iterative Best Improvement:

• select the neighbor that optimizes some evaluation
function

• Which strategy would make sense? Select neighbor
with …

Minimal number of constraint violations

Similar number of constraint violations as current state

Maximal number of constraint violations

No constraint violations

Iterative Best Improvement

• How to determine the neighbor node to be selected?

• Iterative Best Improvement:

• select the neighbor that optimizes some evaluation
function

• Which strategy would make sense? Select
neighbour with …

• Evaluation function:
h(n): number of constraint violations in state n

• Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n
with minimal h(n)

• Hill climbing: equivalent algorithm for maximization problems

• Here: maximize the number of constraints satisfied

Minimal number of constraint violations

CPSC 322, Lecture 5 Slide 10

Selecting the best neighbor

A common component of the scoring function (heuristic) =>

select the neighbor that results in the ……

- the min conflicts heuristics

• Example: A,B,C same domain {1,2,3} , (A=B, A>1, C≠3)

Example: N-Queens

• Put n queens on an n × n board with no two

queens on the same row, column, or diagonal

(i.e attacking each other)

• Positions a queen

can attack

Example: N-queen as a local search problem

CSP: N-queen CSP
- One variable per column; domains {1,…,N} => row where

the queen in the ith column seats;

- Constraints: no two queens in the same row, column or
diagonal

Neighbour relation: value of a single column differs

Scoring function: number of constraint violations (i..e,
number of

 attacks)

CPSC 322, Lecture 5 Slide 13

Example: n-queens
Put n queens on an n × n board with no two queens on

the same row, column, or diagonal (i.e attacking each other)

Example: Greedy descent for N-Queen
For each column, assign randomly each queen to a row

 (a number between 1 and N)

Repeat

• For each column & each number: Evaluate how many

constraint violations changing the assignment would

yield

• Choose the column and number that leads to the

fewest violated constraints; change it

Until solved

15

h = 5 h = ? h = ?

3 1 0 2

CPSC 322, Lecture 5 Slide 16

n-queens, Why?

Why this problem?

Lots of research in the 90’ on local search for CSP

was generated by the observation that the run-

time of local search on n-queens problems is

independent of problem size!

CPSC 322, Lecture 5 Slide 17

Lecture Overview

• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 18

Constrained Optimization Problems

So far we have assumed that we just want to find a

possible world that satisfies all the constraints.

But sometimes solutions may have different values /

costs

• We want to find the optimal solution that

• maximizes the value or

• minimizes the cost

CPSC 322, Lecture 5 Slide 19

Constrained Optimization Example

Hill Climbing means selecting the neighbor which best

improves a (value-based) scoring function.

Greedy Descent means selecting the neighbor which

minimizes a (cost-based) scoring function.

The scoring function we’d like to maximize might be:

f(n) = (C + A) + #-of-satisfied-const

• Example: A,B,C same domain {1,2,3} , (A=B, A>1, C≠3)

• Value = (C+A) so we want a solution that maximize that

CPSC 322, Lecture 5 Slide 20

Hill Climbing

NOTE: Everything that will be said for Hill

Climbing is also true for Greedy Descent

CPSC 322, Lecture 5 Slide 21

Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

(Plateau)

CPSC 322, Lecture 5 Slide 22

Corresponding problem for GreedyDescent

Local minimum example: 8-queens problem

A local minimum with h = 1

CPSC 322, Lecture 5 Slide 23

Even more Problems in higher dimensions

E.g., Ridges – sequence of local maxima not

directly connected to each other

From each local maximum you can only

 go downhill

CPSC 322, Lecture 5 Slide 24

Lecture Overview

• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 25

Local Search: Summary

• A useful method in practice for large CSPs

• Start from a possible world

• Generate some neighbors (“similar” possible worlds)

• Move from current node to a neighbor, selected to

minimize/maximize a scoring function which combines:

 Info about how many constraints are violated

 Information about the cost/quality of the solution (you want the

best solution, not just a solution)

CPSC 322, Lecture 5 Slide 26

Stochastic Local Search

GOAL: We want our local search

• to be guided by the scoring function

• Not to get stuck in local maxima/minima, plateaus etc.

• SOLUTION: We can alternate
a) Hill-climbing steps

b) Random steps: move to a random neighbor.

c) Random restart: reassign random values to all
variables.

Which randomized method would work best in each of

these two search spaces?

Greedy descent with random steps best on A

Greedy descent with random restart best on B

 Greedy descent with random steps best on B

Greedy descent with random restart best on A

 equivalent

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

A B

• But these examples are simplified extreme cases for illustration

- in practice, you don’t know what your search space looks like

• Usually integrating both kinds of randomization works best

Greedy descent with random steps best on B

Greedy descent with random restart best on A

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

A B

Which randomized method would work best in each of

the these two search spaces?

CPSC 322, Lecture 5 Slide 29

Random Steps (Walk)

Let’s assume that neighbors are generated as
• assignments that differ in one variable's value

How many neighbors there are given n variables with
domains with d values?

One strategy to add randomness to the
selection variable-value pair.
Sometimes choose the pair

• According to the scoring function

• A random one
 E.G in 8-queen

• How many neighbors?

• ……..

CPSC 322, Lecture 5 Slide 30

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

• Sometimes select variable:
1. that participates in the largest number of conflicts.

2. at random, any variable that participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

0

2

2

3

3

2

3 Aispace

2 a: Greedy Descent with
Min-Conflict Heuristic

CPSC 322, Lecture 5 Slide 31

Successful application of SLS

• Scheduling of Hubble Space Telescope:

reducing time to schedule 3 weeks of

observations:

 from one week to around 10 sec.

32

Example: SLS for RNA secondary structure design
RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function

Predicting structure for a
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure?

• Local search over strands

 Search for one that folds
into the right structure

• Evaluation function for a strand

 Run O(n3) prediction algorithm

 Evaluate how different the result is
from our target structure

 Only defined implicitly, but can be
evaluated by running the prediction algorithm

RNA strand
GUCCCAUAGGAUGUCCCAUAGGA

Secondary structure

Easy Hard

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC

[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

 CPSC 322, Lecture 1

CSP/logic: formal verification

33

 Hardware verification Software verification

 (e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:

 Encodings into propositional satisfiability (SAT)
CPSC 322, Lecture 1

CPSC 322, Lecture 5 Slide 34

(Stochastic) Local search advantage:

Online setting
• When the problem can change (particularly

important in scheduling)

• E.g., schedule for airline: thousands of flights and

thousands of personnel assignment

• Storm can render the schedule infeasible

• Goal: Repair with minimum number of changes

• This can be easily done with a local search starting

form the current schedule

• Other techniques usually:

• require more time

• might find solution requiring many more changes

SLS limitations

• Typically no guarantee to find a solution even if one exists

• SLS algorithms can sometimes stagnate

Get caught in one region of the search space and never terminate

• Very hard to analyze theoretically

• Not able to show that no solution exists

• SLS simply won’t terminate

• You don’t know whether the problem is infeasible or the

algorithm has stagnated

SLS Advantage: anytime algorithms

• When should the algorithm be stopped ?

• When a solution is found

(e.g. no constraint violations)

• Or when we are out of time: you have to act NOW

• Anytime algorithm:

maintain the node with best h found so far (the “incumbent”)

given more time, can improve its incumbent

CPSC 322, Lecture 5 Slide 37

Learning Goals for today’s class – part1

You can:

• Implement local search for a CSP.

• Implement different ways to generate neighbors

• Implement scoring functions to solve a CSP by

local search through either greedy descent or

hill-climbing.

• Implement SLS with

• random steps (1-step, 2-step versions)

• random restart

CPSC 322, Lecture 5 Slide 38

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

Evaluating SLS algorithms
• SLS algorithms are randomized

• The time taken until they solve a problem is a random variable

• It is entirely normal to have runtime variations of 2 orders of

magnitude in repeated runs!

E.g. 0.1 seconds in one run, 10 seconds in the next one

On the same problem instance (only difference: random seed)

Sometimes SLS algorithm doesn’t even terminate at all:

stagnation

• If an SLS algorithm sometimes stagnates, what is its mean

runtime (across many runs)?

• Infinity!

• In practice, one often counts timeouts as some fixed large value X

• Still, summary statistics, such as mean run time or median run

time, don't tell the whole story

 E.g. would penalize an algorithm that often finds a solution quickly but

sometime stagnates

CPSC 322, Lecture 5 Slide 40

Comparing Stochastic Algorithms: Challenge

• Summary statistics, such as mean run time, median run

time, and mode run time don't tell the whole story

• What is the running time for the runs for which an algorithm never
finishes (infinite? stopping time?)

100%

runtime / steps
0 10 20 30 …..

% of solved runs

CPSC 322, Lecture 5 Slide 41

First attempt….

• How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn't

halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve

the rest

C. one solves the problem in 100% of the cases, but slowly?

100%

Mean runtime / steps

of solved runs

% of solved runs

CPSC 322, Lecture 5 Slide 42

Runtime Distributions are even more

effective
Plots runtime (or number of steps) and the proportion (or

number) of the runs that are solved within that runtime.

• log scale on the x axis is commonly used

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps
 Which algorithm is most likely to

solve the problem within 7 steps?

blue green red

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps
 Which algorithm is most likely to

solve the problem within 7 steps?

red

Comparing runtime distributions
• Which algorithm has the best median performance?

• I.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

blue

Comparing runtime distributions
• Which algorithm has the best median performance?

• I.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

blue green red

Comparing runtime distributions

 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of

solved runs, i.e.

P(solved by

 this # of

steps/time)

of steps

 28% solved

after 10 steps,

then stagnate

 57% solved

after 80 steps,

then stagnate

 Slow, but does

not stagnate Crossover point:

if we run longer than 80

steps, green is the

best algorithm

 If we run less than

10 steps, red is the

best algorithm

Runtime distributions in AIspace

• Let’s look at some algorithms and their runtime

distributions:

1. Greedy Descent

2. Random Sampling

3. Random Walk

4. Greedy Descent with random walk

• Simple scheduling problem 2 in AIspace:

CPSC 322, Lecture 5 Slide 49

Runtime Distributions

100%

time t

% of solved runs

Which one would you use if you could wait

• t = t1 ?

• t = t2 ?

• t = t3 ?

CPSC 322, Lecture 5 Slide 50

What are we going to look at in AIspace

When selecting a variable first
followed by a value:

• Sometimes select variable:
1. that participates in the

largest number of conflicts.

2. at random, any variable that
participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

AIspace terminology

Random sampling

Random walk

Greedy Descent

Greedy Descent Min
conflict

Greedy Descent with
random walk

Greedy Descent with
random restart …..

CPSC 322, Lecture 5 Slide 51

Stochastic Local Search

• Key Idea: combine greedily improving moves with

randomization

• As well as improving steps we can allow a “small

probability” of:

• Random steps: move to a random neighbor.

• Random restart: reassign random values to all

variables.

• Stop when

• Solution is found (in vanilla CSP …………………………)

• Run out of time (return best solution so far)

• Always keep best solution found so far

CPSC 322, Lecture 5 Slide 52

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 53

Tabu lists

• To avoid search to

• Immediately going back to previously visited candidate

• To prevent cycling

• Maintain a tabu list of the k last nodes visited.

• Don't visit a poss. world that is already on the tabu list.

• Cost of this method depends on…..

CPSC 322, Lecture 5 Slide 54

Simulated Annealing

• Annealing: a metallurgical process where metals

are hardened by being slowly cooled.

• Analogy: start with a high ``temperature'': a high

tendency to take random steps

• Over time, cool down: more likely to follow the scoring

function

• Temperature reduces over time, according to an

annealing schedule

• Key idea: Change the degree of randomness….

CPSC 322, Lecture 5 Slide 55

Simulated Annealing: algorithm

Here's how it works (for maximizing):
• You are in node n. Pick a variable at random and a

new value at random. You generate n'

• If it is an improvement i.e., , adopt it.

• If it isn't an improvement, adopt it probabilistically

depending on the difference and a temperature

parameter, T.

• we move to n' with probability e(h(n')-h(n))/T

CPSC 322, Lecture 5 Slide 56

• If it isn't an improvement, adopt it probabilistically

depending on the difference and a temperature

parameter, T.

• we move to n' with probability e(h(n')-h(n))/T

CPSC 322, Lecture 5 Slide 57

Properties of simulated annealing search

One can prove: If T decreases slowly enough, then

simulated annealing search will find a global

optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.

CPSC 322, Lecture 5 Slide 58

Lecture Overview
• Local search

• Constrained Optimization

• Greedy Descent / Hill Climbing: Problems

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

• SLS variants

Tabu lists

Simulated Annealing

• Population Based

Beam search

Genetic Algorithms

CPSC 322, Lecture 5 Slide 59

Population Based SLS

Often we have more memory than the one required

for current node (+ best so far + tabu list)

Key Idea: maintain a population of k individuals

• At every stage, update your population.

• Whenever one individual is a solution, report it.

Simplest strategy: Parallel Search

• All searches are independent

• Like k restarts

CPSC 322, Lecture 5 Slide 60

Population Based SLS: Beam Search
Non Stochastic

• Like parallel search, with k individuals, but you

choose the k best out of all of the neighbors.

• Useful information is passed among the k parallel

search thread

• Troublesome case: If one individual generates several

good neighbors and the other k-1 all generate bad

successors….

CPSC 322, Lecture 5 Slide 61

Population Based SLS: Stochastic

Beam Search
• Non Stochastic Beam Search may suffer from

lack of diversity among the k individual (just a more

expensive hill climbing)

• Stochastic version alleviates this problem:

• Selects the k individuals at random

• But probability of selection proportional to their value
(according to scoring function)

CPSC 322, Lecture 5 Slide 62

Stochastic Beam Search: Advantages

• It maintains diversity in the population.

• Biological metaphor (asexual reproduction):

each individual generates “mutated” copies of itself (its

neighbors)

The scoring function value reflects the fitness of the

individual

the higher the fitness the more likely the individual will

survive (i.e., the neighbor will be in the next generation)

CPSC 322, Lecture 5 Slide 63

Population Based SLS: Genetic Algorithms
• Start with k randomly generated individuals

(population)

• An individual is represented as a string over a finite
alphabet (often a string of 0s and 1s)

• A successor is generated by combining two parent
individuals (loosely analogous to how DNA is spliced in
sexual reproduction)

• Evaluation/Scoring function (fitness function). Higher

values for better individuals.

• Produce the next generation of individuals by
selection, crossover, and mutation

CPSC 322, Lecture 5
Slide 64

Genetic algorithms: Example

Representation and fitness function

State: string over finite alphabet

Fitness function: higher value

better states

CPSC 322, Lecture 5 Slide 65

Genetic algorithms: Example

24/(24+23+20+11) = 31%

23/(24+23+20+11) = 29% etc

Selection: common strategy, probability of

being chosen for reproduction is directly

proportional to fitness score

CPSC 322, Lecture 5 Slide 66

Genetic algorithms: Example

Reproduction: cross-over and mutation

CPSC 322, Lecture 5 Slide 67

Genetic Algorithms: Conclusions

• Their performance is very sensitive to the choice

of state representation and fitness function

• Extremely slow (not surprising as they are

inspired by evolution!)

CPSC 322, Lecture 5 Slide 68

Learning Goals for today’s class part-2

You can:

• Compare SLS algorithms with runtime

distributions

• Implement a tabu-list.

• Implement the simulated annealing algorithm

• Implement population based SLS algorithms:
• Beam Search

• Genetic Algorithms.

• Explain pros and cons of different SLS algorithms .

CPSC 322, Lecture 5 Slide 69

Modules we'll cover in this course: R&Rsys

Environment

Problem

Query

Planning

Deterministic Stochastic

Search

Arc Consistency

Search

Search
Value Iteration

Var. Elimination

Constraint
Satisfaction

Logics

STRIPS

Belief Nets

Vars +
Constraints

Decision Nets

Markov Processes

Var. Elimination

Static

Sequential

Representation

Reasoning

Technique

SLS

CPSC 322, Lecture 5 Slide 70

Next class

• Planning (Chp 8.1-8.2, 8.4): How to select

and organize a sequence of actions to

achieve a given goal…

• Start Logics (Chp 5-1-5.3)

Posted on WebCT

• Assignment2 on CSPs (due on Thurs!)

CPSC 322, Lecture 5 Slide 71

Sampling a discrete probability

distribution

CPSC 322, Lecture 5 Slide 72

Systematically solving CSPs: Summary

• Build Constraint Network

• Apply Arc Consistency

• One domain is empty 

• Each domain has a single value 

• Some domains have more than one value 

• Apply Depth-First Search with Pruning

• Split the problem in a number of disjoint cases

• Apply Arc Consistency to each case

CPSC 322, Lecture 5 Slide 73

CSPs summary

Find a single variable assignment that satisfies all of our

constraints (atemporal)

• Systematic Search approach (search space …..?)

• Constraint network support

 inference e.g., Arc Consistency (can tell you if solution does not exist)

Decomposition

• Heuristic Search (degree, min-remaining)

• (Stochastic) Local Search (search space …..?)

• Huge search spaces and highly connected constraint network

but solutions densely distributed

• No guarantee to find a solution (if one exists).

• Unable to show that no solution exists

• Solving CSPs is NP-hard

- Search space for many CSPs is huge

- Exponential in the number of variables

- Even arc consistency with domain splitting is often not enough

• Alternative: local search

• use algorithms that search the space locally, rather than

systematically

• Often finds a solution quickly, but are not guaranteed to find a

solution if one exists (thus, cannot prove that there is no solution)

Local Search: Motivation

Local Search Problem: Definition

75

Definition: A local search problem consists of a:

CSP: a set of variables, domains for these variables, and constraints

on their joint values.

A node in the search space will be a complete assignment to all of the

variables.

Neighbour relation: an edge in the search space will exist

when the neighbour relation holds between a pair of nodes.

Scoring function: h(n), judges cost of a node (want to minimize)

 - E.g. the number of constraints violated in node n.

 - E.g. the cost of a state in an optimization context.

• Given the set of variables {V1 ….,Vn }, each with

domain Dom(Vi)

• The start node is any assignment {V1 / v1,…,Vn / vn } .

• The neighbors of node with assignment

 A= {V1 / v1,…,Vn / vn }

 are nodes with assignments that differ from A for one

value only

Example

V1 = v1 ,V2 = v1 ,.., Vn = v1

Search Space

V1 = v2 ,V2 = v1 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v1

V1 = v1 ,V2 = vn ,.., Vn = v1

V1 = v4 ,V2 = v2 ,.., Vn = v1

V1 = v4 ,V2 = v3 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v2

• Only the current node is kept in memory at each step.

• Very different from the systematic tree search approaches we

 have seen so far!

• Local search does NOT backtrack!

