(Stochastic) Local Search

Computer Science cpsc322, Lecture 5
(Textbook Chpt 4.8-4.9)

May, 22, 2012

CPSC 322, Lecture 5 Slide 1

Course Announcements

Posted on WebCT
« Assignment2 on CSPs (due on Thurs!)

If you are confused about basic CSPs..... Check learning
goals at the end of lectures. Please come to office hours

* Work on CSPs Practice EX:

« Exercise 4.A: arc consistency
« Exercise 4.B: constraint satisfaction problems
 Exercise 4.C: SLS for CSP

« MIDTERM: Mon May 28t — 3PM (room TBA)

CPSC 322, Lecture 5 Slide 2

http://www.aispace.org/exercises/exercise4-a-1.shtml
http://www.aispace.org/exercises/exercise4-b-1.shtml
http://www.aispace.org/exercises/exercise4-c-2.shtml

Systematically solving CSPs: Summary

 Build Constraint Network

* Apply Arc Consistency
_*,0One domain is empty > 2 ol
P *>Each domain has a single value — WWW’(‘*Ui So

* Some domains have more than one value —» 7 l
\/V\aol oY W\a«/]l/lo‘\" have > Solvdion ‘

= Apply Depth-First Search with Pruning

—>5plit the problem in a number of disjoint cases
é' Apply Arc Consistency to each case

CPSC 322, Lecture 5 Slide 3

Lecture Overview
 Local search

* Constrained Optimization
* Greedy Descent / Hill Climbing: Problems

» Stochastic Local Search (SLS)

* Comparing SLS algorithms

* SLS variants
v'Tabu lists
v'Simulated Annealing

* Population Based
v'Beam search

v'Genetic Algorithms
CPSC 322, Lecture 5 Slide 4

(<

Local Search motivation: Scale

Many CSPs (scheduling, DNA computing, more
later) are simply too big for systematic approaches

If you have 10° vars with dom(var,) = 104

« Systematic Search * Constraint Network
L= 10T S pecekes UL
R . 9 V g T S 5
f@l — [Q QO) IO + %[0
lo
Emmc\'{}dep‘m E;— rnsx 3 of iedes
{'56*0('

 but if solutions are densely distributed.......
CPSC 322, Lecture 5 Slide 5

Local Search: General Method

* Start from a possible world (not s poth)
* Generate some neighbors (“similar” possible worlds)
* Move from the current node t ighbor) selected

V\B\%l/l bors QL
stovt=

Slide 6

Local Search: Selecting Neighbors

How do we determine the neighbors?
« Usually this is simple: some small incremental change to

the variable assignment

a) assignments that differ in one variable's value, by (for instance) a
—~ value difference of +1

b) assignments that differ in one variable's value , J,Z_
C) assignments that differ in two variables' values, et/ . &X""éak
~ § , 5
* Example: A,B,C same domain {1,2,3 £y

(b) .

CPSC 322, Lecture 5 . - Slide 7

lterative Best Improvement

* How to determine the neighbor node to be selected?

* |terative Best Improvement:

* select the neighbor that optimizes some evaluation
function

« Which strategy would make sense”? Select neighbor
with ...
Maximal number of constraint violations
Similar number of constraint violations as current state

No constraint violations

lterative Best Improvement

* How to determine the neighbor node to be selected?

* |terative Best Improvement:

* select the neighbor that optimizes some evaluation
function

* Which strategy would make sense”? Select

« Evaluation function:
h(n): number of constraint violations in state n

- Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n
with minimal h(n)
« Hill climbing: equivalent algorithm for maximization problems
* Here: maximize the number of constraints satisfied

Selecting the best neighbor

jxample: A,B,C same domain {1,2,3}, (A=B, A>1, C*3)

A common component of the scoring function (heuristic) =>
select the neighbor that results in the

- the min conflicts heuristics

CPSC 322, Lecture 5 Slide 10

Example: N-Queens

 Put n queens on an n x n board with no two
gueens on the same row, column, or diagonal
(i.e attacking each other)

/

AN /
N /

* Positions a queen
can attack

=
}A N

N
/

Example: N-queen as a local search problem
CSP: N-queen CSP

- One variable per column; domains {1,...,N} => row where
the queen in the it" column seats;

- Constraints: no two queens in the same row, column or
diagonal
Neighbour relation: value of a single column differs

Scoring function: number of constraint violations (i..e,

number of = =

Example: n7-queens

Put 7 queens on an n x nboard with no two queens on
the same row, column, or diaggnal (i.e attacking each other)

,««"’_—__/ ~—

Example: 4-Queens

F2wme: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column (‘ta fwmk V\a'g)\" Ioor‘fx

Goal test: no attacks

e
e ——>

Evaluation: /(1) = number of attacks
\/’L\/L\/5 vV
o
(W E:;
’L 2 || ¥ ﬁolUJ{OV’
z 3
VAT [s
NL) —
Vo2 N\

J CPSC 322, Lecture 5 Slide 13

Example: Greedy descent for N-Queen

For each column, assign randomly each queen to a row

(a number between 1 and N)
Repeat

* For each column & each number: Evaluate how many
constraint violations changing the assignment would

yield

* Choose the column and number that leads to the
fewest violated constraints; change it

Until solved

W

W

?
n-queens Why* b

2\ exxP
) -
/-~ S
Why this problem? _—

"
Lots of research in the 90’ on local search for CSP

was generated by the observation that the run-
time of local search on n-queens problems is
independent of problem size!

Given random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)

CPSC 322, Lecture 5 Slide 16

Lecture Overview

 Local search

* Constrained Optimization
* Greedy Descent / Hill Climbing: Problems

» Stochastic Local Search (SLS)

* Comparing SLS algorithms

e SLS variants
v'Tabu lists
v'Simulated Annealing

* Population Based

v'"Beam search

v'Genetic Algorithms
CPSC 322, Lecture 5 Slide 17

(<

Constrained Optimization Problems

So far we have assumed that we just want to find a
possible world that satisfies all the constraints.

But sometimes solutions may have different values /
costs

» We want to find the optimal solution that
- lmaximizes the valug or

* (minimizes the @

CPSC 322, Lecture 5 Slide 18

Constrained Optimization Example

* Example: A,B,C same domain {1,2,3}, (A=B, A>1, C*3)
* Value = KC+A) so we want a solution that maximize that

The scoring function we'd like to maximize mlght be A
fn)=(C+A)+ #-oﬁsaz‘/sﬁed-co_n;} (i 7_34. > (\4-\)-\-\ (2+ \3} +2

Hill Climbing means selecting the neighbor which best
improves a (value-based) scoring function.

Greedy Descent means selecting the neighbor which
minimizes a (cost-based) scoring function. cosT 4 #sf-couhict s

CPSC 322, Lecture 5 Slide 19

Hill Climbing

NOTE: Everything that will be said for Hill
Climbing is also true for Greedy Descent

Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

ob_icctivifunction

shoulder

global maximum

/

A

/7 local maximum

L

"flat" local maximum
(Plateau)

= state space

cuirent)<_—_-£o) 2,2, .j

state

Corresponding problem for GreedyDescent

Local minimum example: 8-queens problem
Va . . \/L‘r\ -~ Vp

CPSC 322, Lecture 5 Slide 22

Even more Problems in higher dimensions

E.g., Ridges — sequence of local maxima not
directly connected to each other

From each local maximum you can only
go downhill

s o‘(\‘ v OK
S)&u V‘C)(‘\m \

CPSC 322, Lecture 5 Slide 23

Lecture Overview

 Local search

* Constrained Optimization
* Greedy Descent / Hill Climbing: Problems

» Stochastic Local Search (SLS)

* Comparing SLS algorithms

e SLS variants
v'Tabu lists
v'Simulated Annealing

* Population Based

v'Beam search

v'Genetic Algorithms
CPSC 322, Lecture 5 Slide 24

(<

Local Search: Summary

A useful method in practice for large CSPs
e Start from a possible world ~ (randowly G‘MSW>

°/9enerate some neighbors (‘similar” possible worlds)
— e,cﬁ dle-M Lrovn wrrwt poss. wold om\j bu‘ ave varishle's

velue
* Move from current node to a neighbor, selected to
_minimize/maximize a scoring function which combines:
v’ Info about how many constraints are violated

v’ Information about the cost/quality of the solution (you want the
best solution, not just a solution)

CPSC 322, Lecture 5 Slide 25

Stochastic Local Search

GOAL: We want our local search
* to be guided by the scoring function
* Not to get stuck in local maxima/minima, plateaus etc.

« SOLUTION: We can alternate
a) Hill-climbing steps
b) Random steps: move to a random neighbor.
C) Random restart: reassign random values to all

Va”ableﬁsbﬂd d) wmove To Wi whch

X < —> wWiproves s@r{ma/
OM/‘L\ <}-OK/V\C;J’\‘OV\

— b> ge[e(f N, r‘aV\o‘oV‘",‘1
=> O uwmp To > candom

2 V] K CPSC 322, Lecture 5 YD DSS- WO‘(\O\ Slide 26

Which randomized method would work best in each of
these two search spaces?

Evaluation function Evaluation function
A A A B
> (1 vari State Spa
State Space (1 variable) tate Space
(1 variable)

Greedy descent with random steps best on A
Greedy descent with random restart best on B

Which randomized method would work best in each of
the these two search spaces?

Evaluation function Evaluation function
A A A B
> (1 vari State Spac
State Space (1 variable) tate Space

le)

« But these examples are simplified extreme cases for illustration
- In practice, you don’t know what your search space looks like

« Usually integrating both kinds of randomization works best

Random Steps (Walk)

Let’'s assume that neighbors are generated as

* assignments that differ in one variable's value

How many neighbors there are given n variables with

domains with d values? @ (o _;J
One strategy to add randomness 10 the— 7 entiles

selection variable-value pair.
Sometimes choose the pair <

Va Vs V3V, V5 Ve Vzv?

g According to the scoring function A | 12 |@@) 14
% A random on g} i
E.G in 8-queen fmes 4 L W
 How many neighbors? X Z - & -
° /_L.QE.\:J.Q s¢ one o+ 71/1,@' ciccled ;V:; Loﬁgb\&ﬁwl - W

2 clhogse ‘rbvldovwlvoue oLihe 56 3 14 17

13(3)14

) 14 | [i2

15 (81)14

16

W
140

W

14

16

16

18

CPSC 322, Lecture 5 71

Slide 29

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

* Sometimes select variable:
— 1. that participates in the largest number of conflicts.Vs
2. at random, any variable that participates in some conflict.
3. atrandom \/,, Wi Vs VgD -
* Sometimes choose value Vi Vo Vs VoL VGV Ve
~ a) That minimizes # of conflicts Z

b) at random<&™ M oAty 4 select:

SoN PV W N D

Aispace

2 a: Greedy Descent with \ W' M
Min-Conflict Heuristic CPSC 322, Lecture 5 # Condls Zslide 30

Successful application of SLS

« Scheduling of Hubble Space Telescope:
reducmg tlme to schedule _le_ejgs_of

fror%; one week)to around @

\

of . &
oM
st Ul
o G

CPSC 322, Lecture 5 Slide 31

Example: SLS for RNA secondary structure design
RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function RNA strand

Predicting structure for a GUCCCAUAGGAUGUCCCAUAGGA
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure? T
* Local search over strands Hard
v' Search for one that folds
into the right structure SeCondary structure

* Evaluation function for a strand Hairpin loop
v Run O(n3) prediction algorithm

v Evaluate how different the result is
from our target structure

v Only defined implicitly, but can be
evaluated by running the prediction algorithm

Multibranched loop

Stacked pairs

Internal loop
External base

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

CPSC 322, Lecture 1 32

CSP/logic: formal verification

SR
Hardware verification Software verification
(e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:
Encodings into propositional satisfiability (SAT)

CPSC 322, Lecture 1 33

(Stochastic) Local search advantage:

Online setting
When the problem can change (particularly
important in scheduling)

E.g., schedule for airline: thousands of flights and
thousands of personnel assignment

* Storm can render the schedule infeasible
Goal: Repair with minimum number of changes

This can be easily done with a local search starting
form the current schedule

Other techniques usually:
* require more time
* might find solution requiring many more changes

SLS limitations

« Typically no guarantee to find a solution even if one exists

* SLS algorithms can sometimes stagnate
v Get caught in one region of the search space and never terminate

* Very hard to analyze theoretically

* Not able to show that no solution exists
* SLS simply won't terminate

* You don’t know whether the problem is infeasible or the
algorithm has stagnated

SLS Advantage: anytime algorithms

* When should the algorithm be stopped ?

* When a solution is found
(e.g. no constraint violations)

* Or when we are out of time: you have to act NOW

* Anytime algorithm:
v’ maintain the node with best h found so far (the “incumbent”)
v’ given more time, can improve its incumbent

Learning Goals for today’s class — part1

You can:
* Implement local search for a CSP.
* Implement different ways to generate neighbors

* Implement scoring functions to solve a CSP by
ocal search through either greedy descent or
nill-climbing.
* Implement SLS with

* random steps (1-step, 2-step versions)

* random restart

CPSC 322, Lecture 5 Slide 37

Lecture Overview
» Local search
* Constrained Optimization
* Greedy Descent / Hill Climbing: Problems

» Stochastic Local Search (SLS)

>3@ M INS
* Comparing SLS algorithms R REAYK
* SLS variants
v'Tabu lists C:Fr-asecjro\“ QH—

v'Simulated Annealing

* Population Based
v'Beam search

v'Genetic Algorithms
CPSC 322, Lecture 5 Slide 38

Evaluating SLS algorithms

« SLS algorithms are randomized
* The time taken until they solve a problem is a random variable

* Itis entirely normal to have runtime variations of 2 orders of
magnitude in repeated runs!

v E.g. 0.1 seconds in one run, 10 seconds in the next one
v"On the same problem instance (only difference: random seed)

v'Sometimes SLS algorithm doesn’t even terminate at all:
stagnation

« |If an SLS algorithm sometimes stagnates, what is its mean
runtime (across many runs)?
* Infinity!
* In practice, one often counts timeouts as some fixed large value X

e Still, summary statistics, such as mean run time or median run
time, don't tell the whole story

v E.g. would penalize an algorithm that often finds a solution quickly but
sometime stagnates

Comparing Stochastic Algorithms: Challenge

« Summary statistics, such as mean run time, median run
time, and mode run time don't tell the whole story

* What is the running time for the runs for which an algorithm never
finishes (infinite? stopping time?)

% of solved runs

100% .
57 o
= 2.5 7%
s)‘,44\
wmt T —

v

runtime / steps

CPSC 322, Lecture 5 Slide 40

First attempt....

 How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn't
halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve
the rest

C. one solves the problem in 100% of the cases, but slowly?

Jo-of solved runs

100% 1 C) ‘ o

S

N

’1;070

411%

L
N

A > Mean runtime / steps

of solved run%I

CPSC 322, Lecture 5 ide 41

Runtime Distributions are even more

effective

Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.
* |og scale on the x axis is commonly used

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

.I

0.8}
0.8}
0.7}
0.6}
0.5}
0.4}
0.3}
0.2}
04}

0

I”‘IIIIJ III ””1I[I3EI 1000

A

C

of steps

CPSC 322, Lecture 5

Slide 42

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

* Typically use a log scale on the x axis

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

10 dqo0 1000
of steps

- red green

Which algorithm is most likely to
solve the problem within 7 steps?

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

* Typically use a log scale on the x axis

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

1 | III“”‘IICI | II””1ICID | I”“'IIC;CID

of steps
Which algorithm is most likely to

solve the problem within 7 steps? ed

Comparing runtime distributions

« Which algorithm has the best median performance?
* l.e., which algorithm takes the fewest number of steps to be

successful in 50% of the i

Fraction of

08
solved runs, i.e.
0.8
P(solvedby]
this # of

steps/time)

1000
of steps

Comparing runtime distributions

« Which algorithm has the best median performance?

* l.e., which algorithm takes the fewest number of steps to be
successful in 50% of the cases?

- red green

1 T — T

Fraction of -
solved runs, i.e.
0.8
P(solvedby]
this # of

steps/time)

1000
of steps

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime
* Typically use a log scale on the x axis

1 — . Slow, but does

Fraction of osl Crossover point: | not stagnate
solved runs, i.e. if we run longer than 80
0.8 steps, green is the
P(solved by 0.7 best algorithm\
this # of 0.6 1 57% solved
os| If we run less than | after 80 steps,

steps/time) 10 steps, red is the

best algorithm\

|then stagnate

A—————— 7t L7101 \ V=10
1after 10 steps,
| then stagnate

10 dqo0 1000
of steps

Runtime distributions in Alspace

* Let's look at some algorithms and their runtime
distributions:

1. Greedy Descent
2. Random Sampling
3. Random Walk

4. Greedy Descent with random walk @ space

« Simple scheduling problem 2 in Alspace:

Runtime Distributions

%fﬂs—-\‘\lc C—Q\ASWX\'\—*'_)
% of solved runs — Dmsahisge A oun

Gvg)

2%, @
ov\,l{ @

7*\ ﬂo v Sa‘\’\ﬂ—-'cc\
(o 3\/&5

t’L = L t—g

time t

CPSC 322, Lecture 5 Slide 49

What are we going to look at in Alspace

When selecting a variable first || Alspace terminology
followed by a value: < %eeps cesterhi,

(Randor/n samm X
* Sometimes select variable: Y“ﬁa‘/g

1. that participates in the Random walk 3k
largest number of conflicts. —

2. at random, any variable that Greedy Descent 1 o
participates in some conflict. —

3. atrandom Greedy Descent Min

* Sometimes choose value conflict &?

a) That minimizes # of conflicts / Greedy Descent with
b) at random random Walk%_aé

Greedy Descent with
random restart

CPSC 322, Lecture 5 Slide 50

Stochastic Local Search

« Key Idea: combine greedily improving moves with
randomization

* As well as improving steps we can allow a “small
probability” of: e.§.
g
* Random steps: move to a random neighbor. 1%

* Random restart: reassign random values to all g o
variables. ¢

 Always keep best solution found so far

« Stop when

* Run out of time (return best solution so far)

CPSC 322, Lecture 5 Slide 51

Lecture Overview
 Local search

* Constrained Optimization
* Greedy Descent / Hill Climbing: Problems

» Stochastic Local Search (SLS)

* Comparing SLS algorithms

* SLS variants
v'Tabu lists
v'Simulated Annealing

* Population Based
v'Beam search

v'Genetic Algorithms
CPSC 322, Lecture 5 Slide 52

(<

Tabu lists

 To avoid search to
* Immediately going back to previously visited candidate
* To prevent cycling

» Maintain a tabu list of the(k)ast nodes visited.
« Don't visit a poss. world that is already on the tabu list.

* Cost of this method depends on.. K

CPSC 322, Lecture 5 Slide 53

Simulated Annealing

« Key idea: Change the degree of randomness....

* Annealing: a metallurgical process where metals
are hardened by being slowly cooled.

* Analogy: start with a high ~“temperature": a high
tendency to take random steps

* Over time, cool down: more likely to follow the scoring
function

 Temperature reduces over time, according to an
annealing schedule

CPSC 322, Lecture 5 Slide 54

Simulated Annealing: algorithm

Here's how it works (for maximizing): h

«(You are in node N. Pick a variable at random and a
new value at random. You generate

* Ifitis an improvement i.e. hay >’/l[l4\ . adopt it.

* |f it isn't an improvement, adopt it probabilistically

—> Wﬁereme and a temperature
parameter, 7. \/) (v >< \’\C"‘S/ L W) - \,@QQO
* We move t@with probability hin)-hir 4

a5

see uwexT shide %4

g

CPSC 322, Lecture 5 Slide 55

* If it isn't an improvement, adopt it probabilistically
depending on the difference and a temperature
parameter, 7.

» we move to n’ with probabilityr h(n?-h(n)/g/_f]
~TTAQ \mg\aw‘r the \/\AXW (s lorob -k'd- N);

. L.6
+l,\e_ Sy Me/r \ S Prdk \
For 3 g/»‘\/fu/_‘: = - 1.4
SRS
< = B B} _}/\—/QJ-{,/\/\
O\ . __3 —). -1 O

CPSC 322, Lecture 5 Slide 56

Properties of simulated annealing search
A

One can prove: If 7 decreases slowly enough, then
simulated annealing search will find a global
optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.

CPSC 322, Lecture 5 Slide 57

Lecture Overview
 Local search

* Constrained Optimization
* Greedy Descent / Hill Climbing: Problems

» Stochastic Local Search (SLS)

* Comparing SLS algorithms

* SLS variants
v'Tabu lists
v'Simulated Annealing

* Population Based
v'Beam search

v'Genetic Algorithms
CPSC 322, Lecture 5 Slide 58

(<

Population Based SLS

Often we have more memory than the one required
for current node (+ best so far + tabu list)

Key Idea: maintain a population of & individuals
* At every stage, update your population.
 Whenever one individual is a solution, report it.

Simplest strategy: Parallel Search W(s@

Very
* All searches are independent @_@@»

 Like k restarts o —>
. 0>’ \‘sz P
but ol eC VV\C’/W‘OY‘V\ ,‘.\ \éQ . >

\ ;
o Yeasows To vse |t- @__>@,_>

CPSC 322, Lecture 5

Slide 59

Population Based SLS: Beam Search

Non Stochastic

 Like parallel search, with kindividuals, but you
choose the A best out of all of the neighbors.

« Useful information is passed-among the k parallel
J heigh bovs
>

Lo (S
t o<
y e B s

* Troublesome case: If one individual generates-several

good neighbors and the other k-1 all generate bad
successors.... the next gemevziov will comprise

o Twdividuals 1
V4 &-11 S\ A
CPSC 322, Lecture 5 Slide 60

Population Based SLS: Stochastic

Beam Search

 Non Stochastic Beam Search may suffer from
lack of diversity among the k individual (just a more
expensive hill climbing)

 Stochastic version alleviates this problem:

= Selects the k individuals at random

* But probability of selection proportional to their value
(according to scoring function)

@ Ve %la bors ém w\}

i seociog umetion = h(ng)
Probeb. M‘v(of selecn V\XO/*\ = é
h(wn,)

——

CPSC 322, Lecture 5 Slide 61

Stochastic Beam Search: Advantages

* It maintains diversity in the population.

* Biological metaphor (asexual reproduction):

v'each individual generates “mutated” copies of itself (its
neighbors)

v'The scoring function value reflects the fitness of the
individual

v'the higher the fitness the more likely the individual will
survive (i.e., the neighbor will be in the next generation)

CPSC 322, Lecture 5 Slide 62

Population Based SLS: Genetic Algorithms

« Start with Arandomly generated individuals
(population)

4

* An individual is represented as a string over a finite
alphabet (often a string of Os and 1s)

* A successor Is generated by combining two parent

individuals (loosely analogous to how DNA is spliced in
sexual reproduction)

« Evaluation/Scoring function (fitness function). Higher
values for better individuals.

* Produce the next generation of individuals by

selection, crossover, and mutation
CPSC 322, Lecture 5 Slide 63

Genetic algorithms: Example &-gueer

=+ oJ(queen pa(s
PoSSlb)u’ éWarcKit«a/

R\?presentationvand fitness function
/RN - - - V& - . SN

Va \Vz ke Mrer
3 3
+ + L?:_; 2%
A 6 2
5 45
4 b
3 3
z 2
1 1 B 23— L
5 >ttscKs 4 3tacKs |
State: string over{inite alphabet >{ 24748552 '
>{ 32752411

Fitness function: higher valu Y
H queew pavrs Wo ’ B
better states@cfc <o Ebm (28-5)

Slide 64

CPSC 322, Lecture 5

Genetic algorithms: Example

Selection: common strategy, probability of
being chosen for reproduction is directly
proportional to fithess score

—
,—9
>

—

24748552

32752411 |

32752411

24 t

24748552 ¢

24415124

‘@m

| 32752411

325432153

la|

Thitial Population

24415124 f

ik
Fith=ss Function

— 24/(24+23+20+11) = 31%
—23/(24+23+20+11) = 29% etc

<l

Selection

<Saw € S

CPSC 322, Lecture 5

Bea\/\/\ S@B’rc\/\

Slide 65

Genetic algorithms: Example

Reproduction: cross-over and mutation

= . v
32752411 || : 32748552 |H—= 3274¢[if2

4748552 | V| 24752411 H—{ 24752411

24748552

32752411

n:m

24415124 32?53;411 >_< 32752124 = 372F2124
32543213 24415@124{ 24415411 -~ 244154
la) (bl A=t I 1dl =]

Initial Population ~ Fitness Function Selection Cross—Ovet Mutation
Aa AFAL by 8 0- A IZ

M

Genetic Algorithms: Conclusions

* Their performance is very sensitive to the choice
of state representation and fitness function

« Extremely slow (not surprising as they are
iInspired by evolution!)

CPSC 322, Lecture 5 Slide 67

Learning Goals for today’s class part-2

You can:
« Compare SLS algorithrps/ with runtime
distributions & 4

* Implement a tabu-list.

+ Implement the simulated annealifig algorithm

* Implement population based SLS algorithms:
* Beam Search
* Genetic Algorithms.

« Explain pros and cons of different SLS algorithms .

CPSC 322, Lecture 5 Slide 68

Modules we'll cover in this course: R&Rsys

Environment |
Deterministic Stochastic
Problem Arc Consistency | | (or €50
. P
Constraint | ||/zrs + Seh |
St Satisfactio Constraints }
e Belief Nets
Query Logics /ad’of(exe"‘"c Var. Elimination
Search " "
Sequential STRIPS schions (_Decision Nets
Planni ” N:f%(Var. Elimination
n—— Search1” ¢ (| Markov Processes
Representation Value lIteration
Reasonlng CPSC 322, Lecture 5 Slide 69
Technique

Next class

Posted on WebCT
« Assignment2 on CSPs (due on Thurs!)

* Planning (Chp 8.1-8.2, 8.4): How to select
and organize a sequence of actions to
achieve a given goal...

 Start Logics (Chp 5-1-5.3)

CPSC 322, Lecture 5 Slide 70

Sampling a discrete probability

distribution |
6-%. S{W\, A\/\Mea\&\"\&. Seleoif' l/\l Wlﬁ'\ Pmba\al \d'ul P
— .3 4
o) '3 1
<D éfcaf’t n

ﬁ.%‘BQBV\/\ esrch - Select™ K mdavidos(s. Probg‘o{\mLT?
\ P\"O'\Dor{'ﬁoma\ o therr valme

SAME RHERE l/l3<hfs“"5w\«p\e
V\’.L Sccowo
A3 22 A sawple
P a—
0 2° i's /3_

CPSC 322, Lecture 5 Slide 71

Systematically solving CSPs: Summary

 Build Constraint Network

* Apply Arc Consistency ¥
* One domain is empt e solLEion
VRN = Ouk 4
——~* Each domain has a single valug — v '€ 5ol

* Some domains have more than one value —» _
\Mafﬂv or may v be > solvin v’

A

A
* Apply Depth-First Search with Pruning 724
g

. 7Split the problem in a number of disjoint cases
* Apply Arc Consistency to each caseZ—

CPSC 322, Lecture 5 Slide 72

CSPs summary

Find a single variable assignment that satisfies all of our
constraints (atemporal)

« Systematic Search approach (search space ?)iz

7« Constraint network support
v'inference e.g., Arc Consistency (can tell you if solution does not exist)
v Decomposition&_

* Heuristic Search (degree, min-remaining)

» (Stochastic) Local Search (search space ?)

= Huge search spaces and highly connected constraint network
ﬁbu@ions densely distributed >

* No guarantee to find a solution (if one exists). %__

* Unable to show that no solution exists
CPSC 322, Lecture 5

Local Search: Motivation

« Solving CSPs is NP-hard
- Search space for many CSPs is huge
- Exponential in the number of variables
- Even arc consistency with domain splitting is often not enough

. Alternative: local search
 use algorithms that search the space locally, rather than
systematically

« Often finds a solution quickly, but are not guaranteed to find a
solution if one exists (thus, cannot prove that there is no solution)

Local Search Problem: Definition

Definition: A local search problem consists of a:

CSP: a set of variables, domains for these variables, and constraints
on their joint values.

A node In the search space will be a complete assignment to all of the
variables.

Neighbour relation: an edge in the search space will exist
when the neighbour relation holds between a pair of nodes.

Scoring function: h(n), judges cost of a node (want to minimize)

- E.g. the number of constraints violated in node n.
- E.g. the cost of a state in an optimization context.

ro

Example

« Given the set of variables {V,V, }, each with
domain Dom(V))

 The start node Is any assignment {V, /v,,...,V, /v, }.

* The neighbors of node with assignment
A={V,/v,...V /v }
are nodes with assignments that differ from A for one
value only

Search Space

= [

 Only the current node is kept in memory at each step.

« \ery different from the systematic tree search approaches we
have seen so far!

 Local search does NOT backtrack!

