
CPSC 322, Lecture 3 Slide 1

Heuristic Search and

Advanced Methods
Computer Science cpsc322, Lecture 3

(Textbook Chpt 3.6 – 3.7)

May, 15, 2012

CPSC 322, Lecture 3 Slide 2

Course Announcements

Posted on WebCT

• Assignment1 (due on Thurs!)

If you are confused about basic search algorithm, different

search strategies….. Check learning goals at the end of

lectures. Please come to office hours

• Work on Graph Searching Practice Ex:
• Exercise 3.C: heuristic search

• Exercise 3.D: search

• Exercise 3.E: branch and bound search

http://www.aispace.org/exercises/exercise3-c-2.shtml
http://www.aispace.org/exercises/exercise3-d-1.shtml
http://www.aispace.org/exercises/exercise3-e-1.shtml

CPSC 322, Lecture 3 Slide 3

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 3 Slide 4

Recap: Search with Costs

• Sometimes there are costs associated with arcs.

• The cost of a path is the sum of the costs of its arcs.

• Optimal solution: not the one that minimizes the

number of links, but the one that minimizes cost

• Lowest-Cost-First Search: expand paths from the

frontier in order of their costs.

CPSC 322, Lecture 3 Slide 5

Recap Uninformed Search

Complete Optimal Time Space

DFS N N O(bm) O(mb)

BFS

Y Y O(bm) O(bm)

IDS

Y Y O(bm) O(mb)

LCFS Y

Costs > 0

Y

Costs >=0

O(bm) O(bm)

CPSC 322, Lecture 3 Slide 6

Recap Uninformed Search

• Why are all these strategies called uninformed?

Because they do not consider any information about

the states (end nodes) to decide which path to

expand first on the frontier

eg

(n0, n2, n3 12), (n0, n3 8) , (n0, n1,n4 13)

In other words, they are general they do not take

into account the specific nature of the problem.

CPSC 322, Lecture 3 Slide 7

Uninformed/Blind search algorithms do not take

into account the goal until they are at a goal

node.

Often there is extra knowledge that can be used

to guide the search: an estimate of the

distance from node n to a goal node.

This is called a heuristic

Heuristic Search

CPSC 322, Lecture 3 Slide 8

More formally

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the shortest

path from node n to a goal node.

• h can be extended to paths: h(n0,…,nk)=h(nk)

• h(n) uses only readily obtainable information (that is easy to

compute) about a node.

CPSC 322, Lecture 3 Slide 9

More formally (cont.)

Definition (admissible heuristic)

A search heuristic h(n) is admissible if it is never an

overestimate of the cost from n to a goal.

• There is never a path from n to a goal that has path length less

than h(n).

• another way of saying this: h(n) is a lower bound on the cost of

getting from n to the nearest goal.

CPSC 322, Lecture 3 Slide 10

Example Admissible Heuristic Functions

G

 Search problem: robot has to find a route from start

location to goal location on a grid (discrete space with

obstacles)

Final cost (quality of the solution) is the number of steps

CPSC 322, Lecture 3 Slide 11

Example Admissible Heuristic Functions

If no obstacles, cost of optimal solution is…

CPSC 322, Lecture 3 Slide 12

Example Admissible Heuristic Functions

If there are obstacle, the optimal solution without

obstacles is an admissible heuristic

G

CPSC 322, Lecture 3 Slide 13

Example Admissible Heuristic Functions

• Similarly, If the nodes are points on a Euclidean plane and

the cost is the distance, we can use the straight-line

distance from n to the closest goal as the value of h(n).

CPSC 322, Lecture 3 Slide 14

Example Heuristic Functions

• In the 8-puzzle, we can use the number of misplaced tiles

CPSC 322, Lecture 3 Slide 15

Example Heuristic Functions

• Another one we can use the number of moves between

each tile's current position and its position in the solution

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPSC 322, Lecture 3 Slide 16

How to Construct a Heuristic

You identify relaxed version of the problem:

• where one or more constraints have been dropped

• problem with fewer restrictions on the actions

Robot: the agent can move through walls

Driver: the agent can move straight

8puzzle: (1) tiles can move anywhere

 (2) tiles can move to any adjacent square

Result: The cost of an optimal solution to the relaxed

problem is an admissible heuristic for the original

problem (because it is always weakly less costly to solve

a less constrained problem!)

CPSC 322, Lecture 3 Slide 17

How to Construct a Heuristic (cont.)

You should identify constraints which, when

dropped, make the problem extremely easy to

solve
• this is important because heuristics are not useful if they're as hard

to solve as the original problem!

This was the case in our examples

Robot: allowing the agent to move through walls. Optimal

solution to this relaxed problem is Manhattan distance

Driver: allowing the agent to move straight. Optimal solution

to this relaxed problem is straight-line distance

8puzzle: (1) tiles can move anywhere Optimal solution to this

relaxed problem is number of misplaced tiles

(2) tiles can move to any adjacent square….

CPSC 322, Lecture 3 Slide 18

Another approach to construct heuristics
Solution cost for a subproblem

1 3

8 2 5

7 6 4

1 2 3

8 4

7 6 5

1 3

@ 2 @

@ @ 4

1 2 3

@ 4

@ @ @

Current node

Goal node

Original Problem

SubProblem

CPSC 322, Lecture 3 Slide 19

Heuristics: Dominance
If h2(n) ≥ h1(n) for all n (both admissible)

then h2 dominates h1

h2 is better for search (why?)

8puzzle: (1) tiles can move anywhere

 (2) tiles can move to any adjacent square

(Original problem: tiles can move to an adjacent square if it is
empty)

search costs for the 8-puzzle (average number of paths
expanded):

d=12 IDS = 3,644,035 paths
 A*(h1) = 227 paths
 A*(h2) = 73 paths

d=24 IDS = too many paths
 A*(h1) = 39,135 paths
 A*(h2) = 1,641 paths

CPSC 322, Lecture 3 Slide 20

Combining Heuristics

How to combine heuristics when there is no

dominance?

If h1(n) is admissible and h2(n) is also admissible

then

h(n)= ………………… is also admissible

… and dominates all its components

CPSC 322, Lecture 3 Slide 21

Combining Heuristics: Example

In 8-puzzle, solution cost for the 1,2,3,4 subproblem
is substantially more accurate than Manhattan
distance in some cases

So…..

CPSC 322, Lecture 3 Slide 22

Admissible heuristic for Vacuum world?

states? Where it is dirty and robot location
actions? Left, Right, Suck

Possible goal test? no dirt at all locations

CPSC 322, Lecture 3 Slide 23

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 3 Slide 24

Best-First Search

 • Idea: select the path whose end is closest to a

goal according to the heuristic function.

• Best-First search selects a path on the frontier

with minimal h-value (for the end node).

• It treats the frontier as a priority queue ordered by h.

(similar to ?)

• This is a greedy approach: it always takes the path

which appears locally best

CPSC 322, Lecture 3 Slide 25

Analysis of Best-First Search

• Complete no: a low heuristic value can mean that

a cycle gets followed forever.

• Optimal: no (why not?)

• Time complexity is O(bm)

• Space complexity is O(bm)

CPSC 322, Lecture 3 Slide 26

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 3 Slide 27

• A* is a mix of:

• lowest-cost-first and

• best-first search

• A* treats the frontier as a priority queue ordered

by f(p)=

• It always selects the node on the frontier with the

………….. estimated …………….distance.

A* Search Algorithm

F-value of ubc kd jb? 6 10 11 9

Computing f-values

CPSC 322, Lecture 3 Slide 29

Analysis of A*

Let's assume that arc costs are strictly positive.

• Time complexity is O(bm)

• the heuristic could be completely uninformative and the

edge costs could all be the same, meaning that A* does

the same thing as….

• Space complexity is O(bm) like ….., A* maintains a

frontier which grows with the size of the tree

• Completeness: yes.

• Optimality: ??

CPSC 322, Lecture 3 Slide 30

Optimality of A*

If A* returns a solution, that solution is guaranteed to

be optimal, as long as

When

• the branching factor is finite

• arc costs are strictly positive

• h(n) is an underestimate of the length of the shortest path

from n to a goal node, and is non-negative

Theorem

 If A* selects a path p as the solution,

p is the shortest (i.e., lowest-cost) path.

CPSC 322, Lecture 3 Slide 31

Why is A* optimal?

• A* returns p

• Assume for contradiction that some other path p' is actually the

shortest path to a goal

• Consider the moment when p is chosen from the frontier. Some

part of path p' will also be on the frontier; let's call this partial

path p''.
p

p'

p''

CPSC 322, Lecture 3 Slide 32

Why is A* optimal? (cont’)

• Because p was expanded before p'',

• Because p is a goal, Thus

• Because h is admissible, cost(p'') + h(p'') for any path

p' to a goal that extends p''

• Thus for any other path p' to a goal.

p

p'

p''

This contradicts our assumption that p' is the shortest path.

CPSC 322, Lecture 8 Slide 33

Optimal efficiency of A*

 • In fact, we can prove something even stronger

about A*: in a sense (given the particular heuristic

that is available) no search algorithm could do

better!

• Optimal Efficiency: Among all optimal algorithms

that start from the same start node and use the

same heuristic h, A* expands the minimal number

of paths.

Sample A* applications

• An Efficient A* Search Algorithm For Statistical

Machine Translation. 2001

• The Generalized A* Architecture. Journal of

Artificial Intelligence Research (2007)

• Machine Vision … Here we consider a new

compositional model for finding salient curves.

• Factored A*search for models over sequences

and trees International Conference on AI. 2003….

It starts saying… The primary challenge when using A*

search is to find heuristic functions that simultaneously are
admissible, close to actual completion costs, and efficient

to calculate… applied to NLP and BioInformatics

CPSC 322, Lecture 9 Slide 34

CPSC 322, Lecture 8 Slide 35

• The AI-Search animation system

http://www.cs.rmit.edu.au/AI-Search/Product/

• To examine Search strategies when they are applied to
the 8puzzle

• Compare only DFS, BFS and A* (with only the two

heuristics we saw in class)

DFS, BFS, A* Animation Example

• With default start state and goal

• DFS will find

Solution at depth 32

• BFS will find

Optimal solution depth 6

• A* will also find opt. sol. expanding

much less nodes

CPSC 322, Lecture 9 Slide 36

nPuzzles are not always solvable

Half of the starting positions for the n-puzzle are

impossible to resolve (for more info on 8puzzle)
http://www.isle.org/~sbay/ics171/project/unsolvable

• So experiment with the AI-Search animation system with

the default configurations.

• If you want to try new ones keep in mind that you may pick

unsolvable problems

CPSC 322, Lecture 3 Slide 37

Learning Goals for today’s class (part 1)

 • Construct admissible heuristics for appropriate

problems.

• Verify Heuristic Dominance.

• Combine admissible heuristics

• Define/read/write/trace/debug different search

algorithms

•With / Without cost

•Informed / Uninformed

• Formally prove A* optimality

CPSC 322, Lecture 3 Slide 38

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 3 Slide 39

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 9 Slide 40

Branch-and-Bound Search

 • What is the biggest advantage of A*?

• What is the biggest problem with A*?

• Possible Solution:

CPSC 322, Lecture 9 Slide 41

Branch-and-Bound Search Algorithm

• Follow exactly the same search path as depth-first search

• treat the frontier as a stack: expand the most-recently
added path first

• the order in which neighbors are expanded can be
governed by some arbitrary node-ordering heuristic

CPSC 322, Lecture 9 Slide 42

Branch-and-Bound Search Algorithm
• Keep track of a lower bound and upper bound on solution

cost at each path
• lower bound: LB(p) = f(p) = cost(p) + h(p)

• upper bound: UB = cost of the best solution found so far.

 if no solution has been found yet, set the upper bound to .

• When a path p is selected for expansion:
• if LB(p) UB, remove p from frontier without expanding it (pruning)

• else expand p, adding all of its neighbors to the frontier

Branch-and-Bound Analysis

• Complete ?

• Optimal ?

• Space complexity?

• Time complexity?

O(b+m) O(bm) O(bm) O(mb)

It depends yes no

It depends yes no

CPSC 322, Lecture 3 Slide 44

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 9 Slide 45

Other A* Enhancements

The main problem with A* is that it uses exponential

space. Branch and bound was one way around

this problem. Are there others?

• …….

• Memory-bounded A*

CPSC 322, Lecture 9 Slide 46

(Heuristic) Iterative Deepening – IDA*

B & B can still get stuck in infinite (extremely long)

paths

• Search depth-first, but to a fixed depth

• if you don't find a solution, increase the depth tolerance

and try again

• depth is measured in………………

• Counter-intuitively, the asymptotic complexity is

not changed, even though we visit paths multiple

times (go back to slides on uninformed IDS)

Analysis of Iterative Deepening A* (IDA*)

• Complete and optimal:

• Time complexity:

• Space complexity:

O(b+m) O(bm) O(bm) O(mb)

It depends yes no

CPSC 322, Lecture 9 Slide 48

Memory-bounded A*

• Iterative deepening A* and B & B use a tiny

amount of memory

• what if we've got more memory to use?

• keep as much of the fringe in memory as we can

• if we have to delete something:

• delete the worst paths (with …………………………..)

• ``back them up'' to a common ancestor

p

pn
p1

CPSC 322, Lecture 3 Slide 49

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 10 Slide 50

Cycle Checking

You can prune a path that ends in a node already on the path.

This pruning cannot remove an optimal solution.

• The time is ………………… in path length.

CPSC 322, Lecture 10 Slide 51

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear

problem into an exponential one!

CPSC 322, Lecture 10 Slide 52

Multiple-Path Pruning

•You can prune a path to node n that you have

already found a path to

• (if the new path is longer – more costly).

CPSC 322, Lecture 10 Slide 53

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the
first path to n ?

• You can remove all paths from the frontier that use the
longer path. (as these can’t be optimal)

CPSC 322, Lecture 10 Slide 54

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the
first path to n ?

• You can change the initial segment of the paths on the
frontier to use the shorter path.

Pruning Cycles

CPSC 322, Lecture 10 Slide 55

Repeated States

Example

CPSC 322, Lecture 3 Slide 56

Lecture Overview
• Recap Uninformed Cost

• Heuristic Search

• Best-First Search

• A* and its Optimality

• Advanced Methods

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

Dynamic Programming

• Idea: for statically stored graphs, build a table of dist(n):

• The actual distance of the shortest path from node n to a

goal g

• This is the perfect search heuristic h

• dist(g) = 0

• dist(z) = 1

• dist(c) = 3

• dist(b) = 4

• dist(k) = ?

• dist(h) = ?

• How could we implement that?

k c

b h

g

z

2

3

1

2

4

1

7 6

7 6

CPSC 322, Lecture 9 Slide 58

This can be built backwards from the goal:

Dynamic Programming

otherwisemdistmn

ngoalisif
ndist

Amn
)(),(costmin

),(_0
)(

,

a

b

c

g
2

3

1

3

g

b

c

a

2 d

1

2

This can be built backwards from the goal:

all the neighbors m

CPSC 322, Lecture 9 Slide 59

But there are at least two main problems:

• You need enough space to store the graph.

• The dist function needs to be recomputed for each goal

Dynamic Programming

This can be used locally to determine what to do.

From each node n go to its neighbor which minimizes

a

b

c

g
2

3

4

3

d

3

2

1

3

)(m)cost(n, mdist

2

1

2

CPSC 322, Lecture 7 Slide 60

Learning Goals for today’s class

•Define/read/write/trace/debug different search

algorithms

•With / Without cost

•Informed / Uninformed

• Pruning cycles and Repeated States

•Implement Dynamic Programming approach

CPSC 322, Lecture 10 Slide 61

Recap Search

Selection Complete Optimal Time Space

DFS LIFO N N O(bm) O(mb)

BFS FIFO Y Y O(bm) O(bm)

IDS(C) LIFO Y Y O(bm) O(mb)

LCFS min cost Y Y O(bm) O(bm)

BFS min h N N O(bm) O(bm)

A* min f Y Y O(bm) O(bm)

B&B LIFO +

pruning
N Y O(bm) O(mb)

IDA* LIFO Y Y O(bm) O(mb)

MBA* min f N Y O(bm) O(bm)

CPSC 322, Lecture 10 Slide 62

Recap Search (some qualifications)

Complete Optimal Time Space

DFS N N O(bm) O(mb)

BFS Y Y O(bm) O(bm)

IDS(C) Y Y O(bm) O(mb)

LCFS Y Y ? O(bm) O(bm)

BFS N N O(bm) O(bm)

A* Y Y ? O(bm) O(bm)

B&B N Y ? O(bm) O(mb)

IDA* Y Y O(bm) O(mb)

MBA* N Y O(bm) O(bm)

CPSC 322, Lecture 10 Slide 63

Search in Practice

Complete Optimal Time Space

DFS N N O(bm) O(mb)

BFS Y Y O(bm) O(bm)

IDS(C) Y Y O(bm) O(mb)

LCFS Y Y O(bm) O(bm)

BFS N N O(bm) O(bm)

A* Y Y O(bm) O(bm)

B&B N Y O(bm) O(mb)

IDA* Y Y O(bm) O(mb)

MBA* N Y O(bm) O(bm)

BDS Y Y O(bm/2) O(bm/2)

CPSC 322, Lecture 10 Slide 64

Search in Practice (cont’)

Many paths to

solution, no ∞ paths?

Informed?

Large branching factor?

CPSC 322, Lecture 3 Slide 65

For next class

Posted on WebCT

• Assignment1 (due this Thurs!)

If you are confused about basic search algorithm, different

search strategies….. Check learning goals at the end of

lectures. Please come to office hours

• Work on Graph Searching Practice Ex:
• Exercise 3.C: heuristic search

• Exercise 3.D: search

• Exercise 3.E: branch and bound search

• Read textbook:

• 4.1- 4.6 we start CSPs

http://www.aispace.org/exercises/exercise3-c-2.shtml
http://www.aispace.org/exercises/exercise3-d-1.shtml
http://www.aispace.org/exercises/exercise3-e-1.shtml

CPSC 322, Lecture 9 Slide 66

Branch-and-Bound Analysis

• Completeness: no, for the same reasons that DFS

isn't complete

• however, for many problems of interest there are no

infinite paths and no cycles

• hence, for many problems B&B is complete

• Time complexity: O(bm)

• Space complexity:…..

• Branch & Bound has the same space complexity as….

• this is a big improvement over …………..!

• Optimality: ……...

Memory-bounded A*

• Iterative deepening A* and B & B use little memory

• What if we have some more memory

(but not enough for regular A*)?

• Do A* and keep as much of the frontier in memory as

possible

• When running out of memory

delete worst path (highest f value) from frontier

Back the path up to a common ancestor

Subtree gets regenerated only when all other paths have

been shown to be worse than the “forgotten” path

• Complete and optimal if solution is at depth

manageable for available memory

Slde 68

Memory-bounded A*

Details of the algorithm are beyond the scope of this course

but

• It is complete if the solution is at a depth manageable by

the available memory

• Optimal under the same conditions

• Otherwise it returns the next reachable solution

• Often used in practice for, is considered one of the best

algorithms for finding optimal solutions

• It can be bogged down by having to switch back and forth

among a set of candidate solution paths, of which only a

few fit in memory

