Heuristic Search and
Advanced Methods

Computer Science cpsc322, Lecture 3
(Textbook Chpt 3.6 — 3.7)

May, 15, 2012

CPSC 322, Lecture 3 Slide 1

Course Announcements

Posted on WebCT
« Assignment1 (due on Thurs!)

If you are confused about basic search algorithm, different
search strategies..... Check learning goals at the end of
lectures. Please come to office hours

« Work on Graph Searching Practice EX:
« Exercise 3.C: heuristic search
 Exercise 3.D: search
 Exercise 3.E: branch and bound search

CPSC 322, Lecture 3 Slide 2

http://www.aispace.org/exercises/exercise3-c-2.shtml
http://www.aispace.org/exercises/exercise3-d-1.shtml
http://www.aispace.org/exercises/exercise3-e-1.shtml

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search
* A* and its Optimality

» Advanced Methods
* Branch & Bound
* A’ tricks
* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 3

Recap: Search with Costs

« Sometimes there are costs associated with arcs.
* The cost of a path is the sum of the costs of its arcs.
14 retue™

E751C w oV vt
oS /@ a,- & _B”?/S_ Lsrort, M2y 3 €3
‘ b W
TR (FS_wonth ¢

"2 L= oo 027
- W\ ¢,
. Qptimal solm@lmminimizes the
number of links, but the one that minimizes cost

» Lowest-Cost-First Search: expand paths from the
frontier in order of their costs.

CPSC 322, Lecture 3 Slide 4

Recap Uninformed Search

Complete Optimal Time Space
_ N
DFS w N o(b™) O(mb)
\I/\‘- ho by a“d
| JE— Fia te sexedh spac
[BFS) Y oy | owm o)
IDS Y Y o) O(mb)
LCFS Y Y o) o) |
— — N
Cosis >20) |

CPSC 322, Lecture 3

Slide 5

Recap Uninformed Search

 Why are all these strategies called uninformed?

Because they do not consider any information about
the states (end nodes) to decide which path to
expand first on the frontier

eg o/ IL‘ ¥
((n0, n2, n3) 12), ((n0/n3) 8),, ({n0, n1 » 13)
L/(Z%J

In other words, they are general they do not take
into account the specific nature of the problem.

CPSC 322, Lecture 3 Slide 6

Heuristic Search

Uninformed/Blind search algorithms do not take
iInto account the goal until they are at a goal
node.

Often there is extra knowledge that can be used
to guide the search: an esfimafe of the
distance from node nto a goal node.

This is called a heuristic

CPSC 322, Lecture 3 Slide 7

More formally

Definition (search heuristic)

A search heuristic A(n)is an estimate of the cost of the shortest
path from node n7to a goal node.

h can be extended to paths: A((n,...,n))=h(n,)
h(n) uses only readily obtainable information (that is easy to

‘compute) about a node. troahier

CPSC 322, Lecture 3 Slide 8

More formally (cont.)

Definition (admissible heuristic)

A search heuristic A(n)is admissible if it is never an
overestimate of the cost from nto a goal.

There is never a path from nto a goal that has path length less
than A(n).

another way of saying this: A(n)is a lower bound on the cost of
getting from nto the nearest goal.]

p@@@

CPSC 322, Lecture 3 Slide 9

Example Admissible Heuristic Functions

Search problem: robot has to find a route from start
location to goal location on a grid (discrete space with
obstacles)

Final cost (quality of the solution) is the number of steps

CPSC 322, Lecture 3 Slide 10

Example Admissible Heuristic Functions

If no obstacles, cost of optimal solution is...

Gozl S"Xt
<2 .
& ST
C v\,
< ¢ b
(@ Tageawple | 7)

?‘[KG\XQH [4—)/—%(4”44/1 1]

v/ .

|
Ye t \fc) ’Z~ ’) 0 V/!‘
Manha e o\«'s«\'m\&{ — 4 Q \—=2_ % L 5

CPSC 322, Lecture 3 Slide 11

Example Admissible Heuristic Functions

If there are obstacle, the optimal solution without

obstacles is an admissible heuristic i . (% A
oo e fazz:‘; e
(O\o . Llolé sV 2 ~7__
(LO 99 o\ \V\ 2

w2 2 S
N o
S(D{(S_Z[T,S > , z2 3 4 5

CPSC 322, Lecture 3 Slide 12

Example Admissible Heuristic Functions

« Similarly, If the nodes are points on a Euclidean plane and
the cost is the distance, we can use the straight-line

distance from nto the closest goal as the value of A(n).
/= o 3’\'\‘1 r‘oai

\w»% >
Straight—line distance
i Buchamest

Arad

‘M 'b/L Bucharest
Craova mﬂ
Em% M 5‘; Dobreta 42
J Eforie 1561
a2 % va Fagaras 176
\ \¢ Giurgiu 77
vasiui_v" Hirsova 151
A Iasi 276
Lugoj 144
MhMehadia 341
Meamt 134
Oradea 180
Pitesti L0y
Hirscva Rimnicu Vikea o3
Sibiu 353
Timisoara 319
Urziceni 20
Efarie 1’rﬁlui 155

Zerind 174

Example Heuristic Functions@a-/)

* |Inthe 8-puzzle, we can use the number of misplaced tiles

2| 21 4 1 |[| 2 51§ 4 1l 2|
st |ls|l—=Hsl|lalls '611.8 ;z' 4
sl B ||| ¥ 6 ||| 7] 8 | 7 | R E 7| 6|} 5
7 — i =

\ﬁg w7

CPSC 322, Lecture 3 Slide 14

Example Heuristic Functions(2)

* Another one we can use the number of moves between
each tile's current position and its position in the solution

- N
7 2 ‘iyl 1 2
4
5 P ? 3 4 5
=\

8 3 1 6 7 8

Start State t}ml State)
sles

1112|3||4| |5||6| |7]|8

ﬁﬁll 7 3 32223

—~

—

L

&« 1 2
6 [i| f | 8]
7 3 7 6
= |
Start Siate Canal Sinle
11123 5|16 |7
Slide 15

CPSC 322, Lecture 3

How to Construct a Heuristic

You identify relaxed version of the problem:
 where one or more constraints have been dropped
« problem with fewer restrictions on the actions
Robot: the agent can move through walls &—
Driver: the agent can move straight <~
8puzzle: (1) tiles can move anywhere 7~

(2) tiles can move to any adjacent square &

Result: The cost of an optimal solution to the relaxed
problem is an admissible heuristic for the original

problem (because it is always weakly less costly to solve
a less constrained problem!)

CPSC 322, Lecture 3 Slide 16

How to Construct a Heuristic (cont.)

You should identify constraints which, when
dropped, make the problem extremely easy to

solve

* this is important because heuristics are not useful if they're as hard
to solve as the original problem!

This was the case in our examples

Robot: allowing the agent to move through walls. Optimal
solution to this relaxed problem is Manhattan distance

Driver: allowing the agent to move straight. Optimal solution
to this relaxed problem is straight-line distance

8puzzle: (1) tiles can move anywhere Optimal solution to this
relaxed problem is number of misplaced tiles

(2) tiles can move to any adjacent square....
CPSC 322, Lecture 3 Slide 17

Another approach to construct heuristics
Solution cost for a subproblem 1 7.7 &4
: A

Original Problem gw(' SubProblem
1 |3 1 |3
8 |2 |5 | — > @2 @
/ |6 |4 @ @ |4
Current node
1 12 |3 1 12 |3 z’(/
_ L0
8 4 @] [4 |
7 |6 [5 elele

Goal node CPSC 322, Lecture 3 Slide 18

Heuristics: Dominance st.f¢
If h,(n) 2 h,(n)for al@(both admissible)
then A, dominates A,

empty) Tlerdhive dce‘,e/wf‘»&/ (ot g B hew Yt'SJﬂZ)
search costs for the 8-puzzle (average number of paths
aded)— o oL selvin v

% > dept o 5o e K hy b,

ﬂ‘? 3,644,035 paths = 1} dle 14
(Adnh,) = 227 paths &

Corred pbom © O
h2) =73 paths £&—

IDS = too many paths IiF hie 4 ":We A A1
A'(h,) = 39,135 paths A

A'(h,) = 1,641 paths“CPsc 322, Lecture 3 | othp, wise /Sidets >

Combining Heuristics

How to combine heuristics when there is no
dominance?

If h,(n) is admissible and h,(n) is also admissible
then

h(n)= W’“‘“Hz) is also admissible

and domlnates all its components
\,gtwc & W g fmnncd

7; ﬁ L

e
A U‘J ej /ﬁ o S
CPSC 322, Lecture 3 Slide 20

Combining Heuristics: Example

In 8-puzzle, solution cost for the /,2 3,4 subp

is substantially more accurate/tlﬁdranhatta_‘;

IS ance IN some cases qu 0
L Ble
S O:«i“ o5 8
O....

mz@«@—

A W

CPSC 322, Lecture 3 Slide 21

/[A,dmjssiblgr%ﬁs_ti\c\gfor Vacuum world?
L 2

S,QV%EZ@L (e ;# S
4 : A A4) 12
ol T 0 (& L=

states? Where it is dirty and robot location

actions? Left, Right, Suck
Possible goal test? no dirt at all locations

CPSC 322, Lecture 3 Slide 22

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search
* A* and its Optimality

» Advanced Methods
* Branch & Bound
* A’ tricks
* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 23

Best-First Search

 |dea: select the path whose end is closest to a
goal according to the heuristic function.

» Best-First search selects a path on the frontier
with minimal /value (for the end node). <—__

* |t treats the frontier as a priority queue ordered by A.
(similarto ?) L < +< b 05T

* This is a greedy approach: it always takes the path
which appears locally best

CPSC 322, Lecture 3 Slide 24

Analysis of Best-First Search

Complete no: a low heuristic value can mean that

a cycle gets followed forever.

| : E AJ)space

O—g

Optimal: no (why not?)
Time complexity is Ob™)
Space complexity is Ob")

A@J)space

CPSC 322, Lecture 3 Slide 25

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search
* A* and its Optimality

» Advanced Methods
* Branch & Bound
* A’ tricks
* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 26

A" Search Algorithm

* m . C @5C
* A is a mix of:
* |owest-cost-first and

° -fi h (
best-first searc _ {j hi et wxte

G
« A’ treats the frontier as a priority queue ordered

by)= Cost (@) +h(p)

* |t always selects the node on the frontier with the
lowesl | estimated .. 2272 ... distance.

CPSC 322, Lecture 3 Slide 27

Computing f-values

SP DT
0.0°%%75 ¢
2.0

3.0
KD
6.0 3.0
AP
g0 >0

F-value of ubc > kd 2> jb? § 9

Analysis of A

Let's assume that arc costs are strictly positive.
« Time complexity is Ob™) V< U= o
* the heuristic could be completely uninformative and the

_edge costs could-all be the same, meaning that A" does
the same thing as.... >+

« Space complexity is O(b’")ﬁ(e B IS5 A maintains a
frontier which grows with the size of the tree

. Completeness] yes. ’

* Optimality: ?7?

CPSC 322, Lecture 3 Slide 29

Optimality of A

If A”returns a solution, that solution is guaranteed to
be optimal, as long as

When

 the branching factor is finite

 arc costs are strictly positive

* h(n)is an underestimate of the length of the shortest path
from nto a goal node, and is non-negative

Theorem

If A”selects a path p as the solution,
pis the shortest (i.e., lowest-cost) path.

CPSC 322, Lecture 3 Slide 30

Why is A" optimal?
« A*returns p Q@SJCOOB > Cg#[f’»

_—

* Assume for contradiction that some other path p’is actually the
shortest path to a goal

« Consider the moment when pis chosen from the frontier. Some
part of path p'will also be on the frontier; let's call this partial

path p" yoct ’
??’%) P
'3\’\‘/\ X9 §?5K
X é(?f(()(\,\a(l’;\s @(W
SO 4 G
fgw')\s 5 2 ¥ \/eg\(’/(@f
rb\\/\)x‘\ e W (cosl

CPSC 322, Lecture 3 Slide 31

Why is A" optimal? (cont’)
(,ObK(Q& p" P

/ cost lx\ (aﬁ' f 4, h
Jo, e ® [PS;\L (F)é /f) L‘(p)

Undecoshimgte of- /
Because p was expanded before ﬁ", % (FB < ’% (\0“5

Because pis a goal,‘o(@ -0 Thus goﬁ(f) < cosl’(p“)+ (1(‘,» @O
Because /s admissible, cost(p”) + h(p") S(abﬂp‘gfor f\ny/patrs
al tha @

I L 144 (
to a goal.that extends
P 103 gogtha! gxjends p

Thus COSb(p) < 65&(()’) for any other path p’to a goal.
/_><os‘f(p') & cost(p)
This contradicts our assumption tha@’is the shortest path:

CPSC 322. Lecture 3 Slide 32

Optimal efficiency of A"

* |n fact, we can prove something even stronger
about A” in a sense (given the particular heuristic
that is available) no search algorithm could do
better!

B

.

- Optimal Efficiency: Among all optimal algorithms
that start from the same start node and use the
same heuristic A4, A" expands the minimal number
of paths.

CPSC 322, Lecture 8 Slide 33

Sample A* applications

 An Efficient A* Search Algorithm For Statistical
Machine Translation. 2001

 The Generalized A* Architecture. Journal of
Artificial Intelligence Research (2007)<—

. . g .
_Machine Vision ... Here we consider a new

—" compositional model for finding salient curves.

* Factored A*search for models over sequences
and trees Interpational Conference on Al. 2003....
It starts saying. " The primary challenge when using A*

search is fto find heuristic functions that simultaneous/ ly are
_aamissible, close to actual completion costs, and efficient

to calculate... applied to NLP and Biolnformatics
N stoes| Lév‘gg"‘égé Processm% Siide 34

CPSC 322, Lecture

DFS, BFS, A" Animation Example

« The Al-Search animation system

http../www.cs.rmit.edu.au/Al-Search/Product/

« To examine Search strategies when they are applied to
the 8puzzle

« Compare only DFS, BFS and A* (with only the two
heuristics we saw in class

Aloorthm Prablem Mode Settings Help

Cpen List

start | wext | Back | ravse | reser | < = = CloseaList

« With default start state and goal e
» DFS will find L lve ormpr3ed _ea /\
1 | _— «Ad/t’{ A/(O 203 [123
Solution at depth 32 N =7 o ¥¢ 833 [833
- BFS will find L Lew =7? T SR
- - < ex ¥ 153 (o2 13
Optimal solution depth 6 898 873] 572

« A will also find opt. sol. expanding
much less nodes

nPuzzles are not always solvable
v
Half of the starting positions for the n-puzzle areZ/

iImpossible to resolve (for more info on 8puzzle)
http://www.isle.org/~sbay/ics171/project/unsolvable

* So experiment with the Al-Search animation system with
the default configurations.

 If you want to try new ones keep in mind that you may pick
unsolvable problems

CPSC 322, Lecture 9 Slide 36

Learning Goals for today’s class (part 1)

» Construct admissible heuristics for appropriate
problems.

* Verify Heuristic Dominance.
e Combine admissible heuristics

* Define/read/write/trace/debug different searc

algorithms
With / Without cost
Informed / Uninformed

* Formally prove A* optimality

CPSC 322, Lecture 3 Slide 37

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search

* A* and its Optimality \
4% 0 vwin s

* Advanced Methods RREAK
* Branch & Bound 20 yecto — nFF}]
* A" tricks

* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 38

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search
* A* and its Optimality

» Advanced Methods
* Branch & Bound
* A’ tricks
* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 39

Branch-and-Bound Search

 What is the biggest advantage of A*?

s s MCU(\QSQ’[CS
* What is the biggest problem with A*?

Spe e

« Possible Solution:
NS H
=

CPSC 322, Lecture 9 Slide 40

Branch-and-Bound Search Algorithm

* Follow exactly the same search path as depth-first search

treat the frontier as a stack: expand the most-recently
added path first

the order in which neighbors are expanded can be o=
governed by some arbitrary node-ordering heuristic

|

,\,

sd'zs\ﬂj L—WC Cxyn" vsé

/N ikt

—> 1t 7
NS

1@ M |2

A\

-~ o

"CPSC 322, Lecture 9 Slide 41

Branch-and-Bound Search Algorithm

» Keep track of a lower bound and upper bound on solution
cost at each path B

* |lower bound: LB(p) =2 f(p) = cost(p) + h(p)
* upper bound: UB =cost of the best solution found so far.

v if no solution has been found yet, set the upper bound to 0.

 When a path pis selected for expansion:
* if LB(p)>UB, remove p from frontier without expanding it (pruning)
* else expand p, adding all of its neighbors to the frontier

(T UB-: oo

\Dcfs X
/\\,\6 \,\/\V:; X0 /?\

6
o 3
CO((ng M?g‘e\;{{/ Zl.\x ’dL S‘:v}\“e_\:\)i(s é'.
(- \\
el) XY o
X(QP/A*RSX Gos) X/Goal V"

X° " CPSC 322, Lecture 9 Slide 42

Branch-and-Bound Analysis

Complete ?

yes no

Optimal ?
yes no

Space complexity?

o(b™ O(m?) O(bm) | O(b+m)

Time complexity?

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search
* A* and its Optimality

» Advanced Methods
* Branch & Bound
* A’ tricks
* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 44

Other A" Enhancements

The main problem with A”is that it uses exponential
space. Branch and bound was one way around
this problem. Are there others? %

« Memory-bounded A"

CPSC 322, Lecture 9 Slide 45

(Heuristic) Iterative Deepening — IDA*

B & B can still get stuck in infinite (extremely Iong)
paths

» Search depth-first, but to a fixed dggth/bouwo’

* if you don't find a solution, increase the depth tolerance
and try again JQ\AW wpa@‘r ex
* depth is measured |n7L it & s(»\@—
sttt vode L (4@ = @?&B »fm*(g e t}

* Counter-intuitively, the asymptotic CompIeX|ty IS
not changed, even though we visit paths multiple
times (go back to slides on uninformed /IDS)

s
(£

CPSC 322, Lecture 9 Slide 46

Analysis of Iterative Deepening A* (IDA¥)

« Complete and optimal:

* Time complexity:

« Space complexity:

o™ O(m") O(bm) [O(b+m)

Memory-bounded A

lterative deepening A* and B & B use a tiny
amount of memory

what if we've got more memory to use?
keep as much of the fringe in memory as we can
if we have to delete something:

Sl ﬁ[p}

CPSC 322, Lecture 9 Slide 48

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search
* A* and its Optimality

» Advanced Methods
* Branch & Bound
* A’ tricks
* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 49

Cycle Checking

o
—<—
%

You can prune a path that ends in a node already on the path.
This pruning cannot remove an optimal solution.

. The time is ...lne s in path length.

[— Z
<“°/ME"

CPSC 322, Lecture 10 Slide 50

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear
problem into an exponential one!

A

CPSC 322, Lecture 10 Slide 51

Multiple-Path Pruning

*You can prune a path to node nthat you have
already found a path to

* (if the new path is longer — more costly).

CPSC 322, Lecture 10 Slide 52

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to nis shorter than the
first path to n ?

* You can remove all paths from the frontier that use the
longer path. (as these can’t be optimal)

CPSC 322, Lecture 10 Slide 53

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to nis shorter than the
first path to n ?

* You can change the initial segment of the paths on the
frontier to use the shorter path.

CPSC 322, Lecture 10 Slide 54

Example

'Pruning Cycles

T ™~ .
© BN V\&gl/\\oorjoJ_ V)ér—_- V\Z)M'l}
M}/‘MLT < 6— W’Lr/“l
§)ra‘<r\j V’G\\ h 5 § " . > >
n 4
1 \ 6’<\o B S Dagr
0/91,) Q
Al 7 V’o’/
“, /V‘\‘S B
A1) Repeated States

Ié V\C(‘gl" IOO(S OJ- V]\o:

3'/\4 \S) 4 IQ}

CPSC 322, Lecture 10 Slide 55

Lecture Overview
» Recap Uninformed Cost

* Heuristic Search
* Best-First Search
* A* and its Optimality

» Advanced Methods
* Branch & Bound
* A’ tricks
* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 3 Slide 56

Dynamic Programming

 |dea: for statically stored graphs, build a table of dist(n):

* The actual distance of the shortest path from node n to a

goal g
* This is the perfect search heuristic h

e dist(g)=0
e dist(z) = 1
e dist(c) =3

- distb)=4 6 7 loo

e dist(k) = ?
6 7 o

e dist(h) = ?

* How could we implement that?

Dynamic Programming

This can be built backwards from the goal:

This can be built backwards from the goal:

_ 0 If 1s_ goal(n),
dist(n) =< . : : ‘
min . .(cost(n,m) +{dist(m)) otherwise
, = st(m}
all the neighbors m 3 O

(Agtég.,mn[(z 4_05} -2
ol\‘stcc):wm(_é%@] _ 2
dist (g)= wn/(avd), (24d)] = 3

CPSC 322, Lecture 9 Slide 58

Dynamic Programming

This can be used locally to determine what to do.
From each node 17 go to its neighbor which minimizes

—

i st(n, m)+d|st(m))7L

* You need enough space to store the graph.

* The dist function needs to be recomputed for each goal
CPSC 322, Lecture 9 Slide 59

Learning Goals for today’s class

Define/read/write/trace/debug different search
algorithms

*With / Without cost

*Informed / Uninformed
* Pruning cycles and Repeated States

*Implement Dynamic Programming approach

CPSC 322, Lecture 7 Slide 60

, Recap Search

. Selectionl(Complete | Optimal Time | Space
DFS LIFO | N N ob™) |O(mb)
BFS FIFO Y Y o) | Om")
IDS(C) | _=LIFO Y Y Oo") %O(mb)
LCFS min cost Y Y o) | Om")
BFS min(p/ N N owb™) | Om™)
A* R Y Y o) | ow")

| BaB LIFO + N Y o) | O(mb)

- pruning 7l

* LIFO
IDA*) Y Y Oo(b") ﬁO(mb)
c MBA* min f N Y o) | OW")

p—

CPSC 322, Lecture 10

Slide 61

Recap Search (some qualifications)

Complete Optimal Time Space
DFS N N O(b™) O(mb)
BFS Y Y O(b™) O(b™)
IDS(C) Y Y O(b™) O(mb)
LCFS Y Y ? O(b™) o)
C>0
BFS N N O(b™) o)
A* Y ML) | o) | opr)
B&B N ? O(b™) O(mb)
IDA* Y Y O(b™) O(mb)
MBA* N Y O(b™) O(b™)

CPSC 322, Lecture 10

Slide 62

Search in Practice

i Complete Optimal Time Space
DFS N N o(b™) O(mb)
BFS Y Y o(b™) O(b™)
IDS(C) =Y =Y o(b™) O(mb)
);;LCFS Y Y o(b™) o(b™)
N N o(b™) o(b™)

A* Y Y o) o)
B&B N Y o) O(mb)
IDA* Y Y o) O(mb)
MBA* N Y o) o)
BDS Y Y O(b™2) o(b?2)

Search in Practice (cont’)

Informed? RY B

CPSC 322, Lecture 10 Slide 64

For next class

Posted on WebCT
« Assignment1 (due this Thurs!)

If you are confused about basic search algorithm, different
search strategies..... Check learning goals at the end of
lectures. Please come to office hours

 Work on Graph Searching Practice EX:
 Exercise 3.C: heuristic search
 Exercise 3.D: search
 Exercise 3.E: branch and bound search

 Read textbook:
e 41-4.6 we start CSPs

CPSC 322, Lecture 3 Slide 65

http://www.aispace.org/exercises/exercise3-c-2.shtml
http://www.aispace.org/exercises/exercise3-d-1.shtml
http://www.aispace.org/exercises/exercise3-e-1.shtml

Branch-and-Bound Analysis

Completeness: no, for the same reasons that DFS
Isn't complete
* however, for many problems of interest there are no

infinite paths and

* hence, for many problems B&B is complete
Time complexity: Ob™)
Space complexity:.& b)

* Branch & Bound has the same space complexity as IS

* this is a big improvement over ../ & !

Optimality: . 4€:2.

CPSC 322, Lecture 9 Slide 66

Memory-bounded A

* lterative deepening A* and B & B use little memory

 What if we have some more memory
(but not enough for regular A*)?

* Do A* and keep as much of the frontier in memory as
possible
* When running out of memory
v'delete worst path (highest f value) from frontier

v Back the path up to a common ancestor

v’ Subtree gets regenerated only when all other paths have
been shown to be worse than the “forgotten” path

» Complete and optimal if solution is at depth
manageable for available memory

Memory-bounded A"

Details of the algorithm are beyond the scope of this course
but

 ltis complete if the solution is at a depth manageable by
the available memory

* Optimal under the same conditions
* Otherwise it returns the next reachable solution

« Often used in practice for, is considered one of the best
algorithms for finding optimal solutions

It can be bogged down by having to switch back and forth
among a set of candidate solution paths, of which only a
few fit in memory

Slde 68

